Skip to main content
Log in

Thermal Injury Increases the Number of Eosinophil Progenitors in Rat Spleen and Bone Marrow

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

We have investigated the effects of thermal injury upon myelopoiesis. IL-3, GM-CSF, and IL-5 were used to stimulate myeloid colony formation. IL-3 induces early myeloid progenitors and a more developed myeloid progenitor, the granulocyte-macrophage colony-forming unit (GM-CFU), to multiply and develop into mature myeloid cells. GM-CSF induces GM-CFU to become mature myeloid cells, while IL-5 induces eosinophil progenitors to become mature eosinophils. Stem Cell Factor (SCF) + IL-6 and FLT3 ligand, which have no effect on colony formation by themselves, were used to enhance the effects of IL-3 and GM-CSF, respectively. We found that thermal injury increased the number of early myeloid progenitors and GM-CFU in the spleen with either IL-3 or GM-CSF as a stimulant. Thermal injury increased the number of early myeloid progenitors in the bone marrow when GM-CSF, but not IL-3, was used to stimulate colony growth. Also, thermal injury increased the numbers of eosinophil progenitors in rat spleen and bone marrow and increased splenic levels of IL-5 mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyman, S. D. and S. E. Jacobsen. 1998. C-kit ligand and FLT3 ligand:stem/progenitor cell factors with overlapping yet distinct activities. Blood 91:1101–1134.

    Google Scholar 

  2. Leenen, P. J. M. and F. T. R. Debruijn. 1997. Murine Myelopoeisis. Imm. Today.

  3. Kurata, H., T. Arai, T. Yokata, and K. Arai. 1995. Differential expression of granulocyte macrophage colony-stimulating factor and IL-3 receptor subunits on human CD34+ cells and leukemic cell lines. J. Allergy Clin. Immunol. 96:1083–1099.

    Google Scholar 

  4. Bedi, A. and S. J. Sharkis. 1995. Mechanisms of cell commitment in myeloid cell differentiation. Curr. Op. Hematol. 2:12–21.

    Google Scholar 

  5. Shurin, M. R., C. Esche, and M. T. Lotze. 1998. FLT3: receptor and ligand. Biology and potential clinical application. Cytokine Growth Factor Rev. 9:37–48.

    Google Scholar 

  6. Broxmeyer, H. E., L. Lu, S. Cooper, L. Ruggieri, Z. H. Li, and S. D. Lyman. 1995. Flt3 ligand stimulates/costimulates the growth of myeloid stem/progenitor cells. Exp. Hematol. 23:1121–1129.

    Google Scholar 

  7. McNiece, I. K. Synergism of hematopoietic colony-stimulating factors. 1992. Am. J. Ped. Hem./Oncol. 14:31–38.

    Google Scholar 

  8. Tanaka, N. Katayama, K. Ohishi, et al. 1995. Accelerated cellcycling of hematopoietic progenitor cells by growth factors. Blood. 86:73–79.

    Google Scholar 

  9. Gabrilove, J. L. Introduction and overview of hematopoietic growth factors. 1989. Semin. Hematol. 26:1–4.

    Google Scholar 

  10. Ishihara, K., T. Nittoh, I. Satoh, and K. Ohuchi. 1999. Analysis of biological activities of recombinant rat interleukin-5. Int. Arch. Allergy Immunol. 120:11–14.

    Google Scholar 

  11. Ishihara, K., I. Satoh, S. Mue, and K. Ohuchi. 2000. Generation of rat eosinophils by recombinant rat interleukin-5 in vitro and in vivo. Biochimca et. Biophysica Acta. 1501:25–32.

    Google Scholar 

  12. Clutterbuck, E. J., E. M. Hirst, and C. J. Sanderson. 1989. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood. 73:1504–1512.

    Google Scholar 

  13. Wallner, S., R. Vautrin, J. Murphy, S. Anderson, and V. Peterson. 1984. The haematopoietic response to burning: studies in an animal model. Burns. 10:236–251.

    Google Scholar 

  14. Gamelli, R. L., J. C. Herbert, and R. S. Foster. 1985. Effect of burn injury on granulocyte and macrophage production. J. Trauma. 25:615–619.

    Google Scholar 

  15. Gruber, D. F. and A. M. Farese. 1989. Bone marrow myelopoiesis in rats after 10%, 20%, or 30% thermal injury. J. Burn Care Rehabil. 10:410–417.

    Google Scholar 

  16. Burgess, A. W. and D. Metcalf. 1980. The nature and action of granulocyte-macrophage colony stimulating factors. Blood. 56:947–958.

    Google Scholar 

  17. Broxmeyer, H. E. Suppressor cytokines and regulation of myelopoiesis. 1992. Am. J. Ped. Hem./Oncol. 14:22–30.

    Google Scholar 

  18. Ikebuchi, K., G. G. Wong, S. C. Clark, J. N. Ihle, Y. Hirai, and M. Ogawa. 1987. Interleukin 6 enhancement of interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc. Natl. Acad. Sci. 84:9035–9039.

    Google Scholar 

  19. Huang, W. H., J. Z. Wu, Z. X. Hu, S. Z. Feng, X. Y. Huang, and A. Li. 1988. Bone marrow granulopoietic response to scalds and wound infection in mice. Burns. 14:292–296.

    Google Scholar 

  20. Santangelo, R. L. Gamelli, and R. Shankar. 2001. Myeloid commitment shifts toward monocytopoiesis after thermal injury and sepsis. Ann. Surg. 233:97–106.

    Google Scholar 

  21. Tang, Y., R. Shankar, M. Gamboa, S. Desai, R. L. Gamelli, and S. B. Jones. 2001. Norepinephrine modulates myelopoiesis after experimental thermal injury with sepsis. Ann. Surg. 233:266–275.

    Google Scholar 

  22. Koike, M. and K. Takatsu. 1994. IL-5 and its receptor: which role do they play in the immune response. Int. Arch. Allergy Immunol. 104:1–9.

    Google Scholar 

  23. Menon, T., T. Sundararaj, and S. Subramanian. 1990. Kinetics of peripheral blood leukocyte counts in patients following thermal injuries. Indian J. Pathol. Microbiol. 33:372–374.

    Google Scholar 

  24. Wong, D. T., R. B. Donoff, J. Yang, et al. 1993. Sequential expression of transforming growth factors alpha and beta 1 by eosinophils during cutaneous wound healing in the hamster. Am. J. Pathol. 143:130–142.

    Google Scholar 

  25. Todd, R., B. R. Donoff, T. Chiang, et al. 1991. The eosinophil as a cellular souce of transforming growth factor alpha in healing cutaneous wounds. Am. J. Pathol. 138:1307–1313.

    Google Scholar 

  26. Yukawa, T. 1993. Eosinophil-derived collagenase (metalloproteinase). Nippon Rinsho. 51:643–650.

    Google Scholar 

  27. Hibbs, M. S., C. L. Mainardi, and A. H. Kang. 1982. Type-specific collagen degradation by eosinophils. Biochem. J. 207:621–624.

    Google Scholar 

  28. Yang, J., A. Torio, R. B. Donoff, et al. 1997. Depletion of eosinophil infiltration by anti-IL-5 monclonal antibody (TRFK-5) accelerates open skin wound epithelial closure. Am. J. Pathol. 151:813–819.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noel, J.G., Wells, D.A., Guo, X. et al. Thermal Injury Increases the Number of Eosinophil Progenitors in Rat Spleen and Bone Marrow. Inflammation 25, 339–349 (2001). https://doi.org/10.1023/A:1012836001062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012836001062

Navigation