Skip to main content
Log in

Interaction of Amorphous Calcium Phosphate with Fibrin In Vitro Causes Decreased Fibrinolysis and Altered Protease Profiles: Implications for Atherosclerotic Disease

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Previously, we demonstrated that amorphous calcium phosphate (ACP), chemical precursor to apatite, strongly interacted with fibrin and facilitated binding of matrix metalloproteinase (MMP)-9, a type IV collagenase. Plasmin-dependent fibrinolysis resulted in coordinate MMP-9 activation. Here we report on the effect(s) of ACP on fibrin degradation and binding of endogenous plasma proteases. Electrophoresis (8.5% SDS-PAGE) revealed that fibrin formed in the presence of ACP demonstrated characteristic γ-γ dimers (90-kDa) and β-monomers (55-kDa), but resisted spontaneous fibrinolysis (72 h, 37°C) or degradation by plasminogen activators (uPA, tPA). Casein zymography revealed an ACP-dependent decrease in fibrin binding of a low molecular weight (Mw) protease triplet (47-, 43-, 42-kDa) and increased fibrin binding of two high Mw proteases (94- and 84-kDa). The low Mw triplet also possessed gelatinolytic activity, but was not an MMP since 1,10-phenanthroline was ineffective as an inhibitor. Fibrin-binding proteases were inhibited to some degree by the serine protease inhibitor aprotinin. Competition/dissociation experiments with ∈-aminocaproic acid revealed that the low Mw triplet lacked kringle regions whereas the 94- and 84-kDa proteases were tentatively identified and glu-/lys-plasmin(ogen)s. The triplet may, however, represent one or more kringle deficient mini-plasminogen(s), since electrophoretic mobility and substrate specificity was similar to elastase-generated mini-plasminogen. To explore these findings in a clinically relevant setting, a series of plasma samples was collected from a patient with unstable angina prior to, during, and post coronary artery bypass graft (CABG) surgery. Fibrin formed from plasma collected during and immediately post CABG was associated with increased fibrinolytic capacity and enhanced binding of a) MMP-9, b) the low Mw protease triplet (described above), and c) PA (as putative 110-kDa tPA:PAI-1 complex). The relevance of these findings to pathologic calcification of atherosclerotic plaques is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rakoczi, I., B. Wiman, and D. Collen. 1978. On the biological significance of the specific interaction between fibrin, plasminogen and antiplasmin. Biochim. Biophys. Acta. 540:295–300.

    Google Scholar 

  2. Mosesson, M. W. 1990. Fibrin polymerization and its regulatory role in hemostasis. J. Clin. Lab. Med. 116:8–17.

    Google Scholar 

  3. Dvorak, H. F. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl. J. Med. 315:1650–1659.

    Google Scholar 

  4. Richardson, D. L., D. S. Pepper, and A. B. Kay. 1976. Chemotaxis for human monocytes by fibrinogen-derived peptides. Brit. J. Haematol. 32:507–513.

    Google Scholar 

  5. Makowski, G. S., and M. L. Ramsby. 1998. Binding of latent matrix metalloproteinase 9 to fibrin: activation via a plasmindependent pathway. Inflammation 22:287–305.

    Google Scholar 

  6. Makowski, G. S., and M. L. Ramsby. 1998. Binding of latent matrix metalloproteinase 9 to fibrin is mediated by amorphous calcium-phosphate. Inflammation 22:599–617.

    Google Scholar 

  7. Boskey, A. L. 1997. Amorphous calcium phosphate: The contention of bone. J Dental Res. 76:1433–1436.

    Google Scholar 

  8. Fleisch, H., and W. F. Neuman. 1961. Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Am. J. Physiol. 200:1296–1300.

    Google Scholar 

  9. Makowski, G. S., and M. L. Ramsby. 1999. Amorphous calcium phosphate-mediated binding of matrix metalloproteinase-9 to fibrin is inhibited by pyrophosphate and bisphosphonate. Inflammation 23:333–360.

    Google Scholar 

  10. McGann, T. C. A., R. D. Kearney, W. Buchheim, A. S. Posner, F. Betts, and N. C. Blumenthal. 1983. Amorphous calcium phosphate in casein micelles of bovine milk. Calcif. Tiss. Int'l. 35:821–823.

    Google Scholar 

  11. Blumenthal, N. C., F. Betts, and A. S. Posner. 1977. Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif. Tiss. Res. 23:245–250.

    Google Scholar 

  12. Hidaka, S., K. Abe, and S. Y. Liu. 1991. A new method for the study of the formation and transformation of calcium phosphate precipitates: effects of several chemical agents and chinese folk medicines. Arch. Oral Biol. 36:49–54.

    Google Scholar 

  13. Koolwijk, P. A., M. M. Miltenburg, M. G. M. van Erck, M. Oudshoorn, M. J. Niedbala, F. C. Breedveld, and V. W. M. van Hinsbergh. 1995. Activated gelatinase-B (MMP-9) and urokinase-type plasminogen activator in synovial fluids of patients with arthritis. Correlation with clinical and experimental variables of inflammation. J. Rheumatol. 22:385–393.

    Google Scholar 

  14. Weinberg, J. B., A. M. M. Pippen, and C. S. Greenberg. 1991. Extravascular fibrin formation and dissolution in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arth. Rheum. 34:996–1005.

    Google Scholar 

  15. Bini, A., K. G. Mann, B. J. Kudryk, and F. J. Schoen. 1999. Noncollagenous bone matrix proteins, calcification, and thrombosis in carotid artery atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 19:1852–1861.

    Google Scholar 

  16. Hermann S. M., C. Whatling, E. Brand, V. Nicaud, J. Gariepy, A. Simon, A. Evans, J. B. Ruidavets, D. Arveiler, G. Luc, L. Tiret, A. Henney, and F. Cambien. 2000. Polymorphisms of the human matrix gla protein (MCP) gene, vascular calcification, and myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 20:2386–2393.

    Google Scholar 

  17. Makowski G. S., and M. L. Ramsby. 1996. Calibrating gelatin zymograms with human gelatinase standards. Anal. Biochem. 236:353–356.

    Google Scholar 

  18. Clauss, A. 1957. Rapid physiological coagulation method for the determination of fibrinogen. Acta. Haematol. 17:237–246.

    Google Scholar 

  19. Regoeczi, E. 1968. Occlusion of plasma proteins by human fibrin: studies using trace-labelled proteins. Br. J. Haematol. 14:279–290.

    Google Scholar 

  20. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Google Scholar 

  21. Heussen, C., and E. B. Dowdle. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102:196–202.

    Google Scholar 

  22. Makowski, G. S., and M. L. Ramsby. 1993. pH modification to enhance the molecular seiving properties of sodium dodecyl sulfate-10% polyacrylamide gels. Anal. Biochem. 212:283–285.

    Google Scholar 

  23. Francis, C. W. and V. J. Marder. 1982. A molecular model of plasmic degradation of crosslinked fibrin. Semin. Thromb. Hemost. 8:25–35.

    Google Scholar 

  24. Ramsby, M. L. and G. S. Makowski. 1999. Overlay assay: enzyme zymography of plasminogen activators and inhibitors. In: The Encyclopedia of Molecular Biology, T. E. Creighton and L. Hood, eds. New York: Wiley & Sons, pp. 1734–1736.

    Google Scholar 

  25. Ramsby, M. L., and D. L. Kreutzer. 1993. Fibrin induction of tissue plasminogen activator in corneal endothelial cells in vitro. Invest. Ophthalmol. Vis. Sci. 34:3207–3219.

    Google Scholar 

  26. Chandler, W. L., G. Schimer, and J. R. Stratton. 1989. Optimum conditions for the stabilization of tissue plasminogen activator activity in human plasma. J. Lab. Clin. Med. 113:362–371.

    Google Scholar 

  27. Thorsen, S., I. Clemmensen, L. Sottrup-Jensen, and S. Magnusson. 1981. Adsorption to fibrin of native fragments of known primary structure from human plasminogen. Biochim. Biophys. Acta 668:377–387.

    Google Scholar 

  28. Lijnen, H. R., B. Van Hoef, and D. Collen. 1981. On the role of carbohydrate side chains of human plasminogen and its interaction with a2-antiplasmin and fibrin. Eur. J. Biochem. 120:149–154.

    Google Scholar 

  29. Machovich, R. and W. G. Owen. 1989. An elastase-dependent pathway of plasminogen activation. Biochemistry 28:4517–4522.

    Google Scholar 

  30. Fearnley, G. R. and J. M. Tweed. 1953. Evidence of an active fibrinolytic enzyme in the plasma of normal people with observation on inhibition associated with the presence of calcium. Clin. Sci. 12:81–89.

    Google Scholar 

  31. Dvorak, H. F., V. S. Harvey, P. Estrella, L. F. Brown, J. McDonagh, and A. M. Dvorak. 1987. Fibrin containing gels induce angiogenesis: implication for tumor stroma generation and wound healing. Lab. Invet. 57:673–683.

    Google Scholar 

  32. Ramsby, M. L., P. C. Donshik, and G. S. Makowski. 2000. Ligneous conjunctivitis: biochemical evidence for hypofibrinolysis. Inflammation 24:45–71.

    Google Scholar 

  33. Cheras, P. A., A. N. Whitaker, E. A. Blackwell, T. J. Sinton, M. D. Chapman, and K. A. Peacock. 1997. Hypercoagulability and hypofibrinolysis in primary osteoarthritis. Clin. Orthopaed. Rel. Res. 334:57–67.

    Google Scholar 

  34. Kawashima, Y., S. Saika, O. Yamanaka, Y. Okede, K. Ohkawa, and Y. Ohnishi. 1998. Immunolocalization of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human subconjunctival tissues. Curr. Eye Res. 17:445–451.

    Google Scholar 

  35. Bini, A., J. J. Fenoglio, Jr, R. Mesa-Tejada, B. Kudryk, and K. L. Kaplan. 1989. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Arteriosclerosis 9:109–121.

    Google Scholar 

  36. Stary, H. C., A. B. Chandler, R. E. Dinsore, V. Fuster, S. Glagov, W. Insull, Jr., M. E. Rosenfeld, C. J. Schwartz, W. D. Wagner, and R. W. Wissler. 1995. A definition of advanced types of athersclerotic lesions and a histological classification of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 15:1512–1531.

    Google Scholar 

  37. Anderson, H. C. 1988. Mechanisms of pathologic calcification. Rheum. Dis. Clin. No. Amer. 14:302–315.

    Google Scholar 

  38. Butler, J., R. Pillai, G. M. Rocker, S. Westaby, D. Parker, and D. J. Shale. 1993. Effect of cardiopulmonary bypass on systemic release of neutrophil elastase and tumor necrosis factor. J. Thor. Cardiovasc. Surg. 102:309–317.

    Google Scholar 

  39. Carney, D. E., C. J. Lutz, A. L. Picone, L. A. Gatto, N. S. Ramamurthy, L. M. Golub, S. R. Simon, B. Searles, A. Paskanik, K. Snyder, C. Finck, H. J. Schiller, and G. F. Nieman. 1999. Matrix metalloproteinase inhibitor prevents acute lung injury after cardiopulmonary bypass. Circulation 100:400–406.

    Google Scholar 

  40. Chandler, W. L., J. C. K. Fitch, M. H. Wall, E. D. Verrier, R. P. Cochran, L. O. Soltow, and B. D. Spiess. 1995. Individual variations in the fibrinolytic response during and after cardiopulmonary bypass. Thromb. Haemost. 74:1293–1297.

    Google Scholar 

  41. Paramo, J. A., J. Rifon, R. Llornes, J. Casares, M. J. Paloma, and E. Rocha. 1991. Intra-and postoperative fibrinolysis in patients undergoing cardiopulmonary bypass surgery. Haemostasis 21:58–64.

    Google Scholar 

  42. Stibbe, J., C. Kluft, E. Brommer, M. Gomes, D. de Jong, and J. Nauta. 1984. Enhanced fibrinolytic activity during cardiopulmonary bypass in open-heart surgery in man is caused by extrinsic (tissue-type) plasminogen activator. Eur. J. Clin. Invest. 14:375–382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makowski, G.S., Ramsby, M.L. Interaction of Amorphous Calcium Phosphate with Fibrin In Vitro Causes Decreased Fibrinolysis and Altered Protease Profiles: Implications for Atherosclerotic Disease. Inflammation 25, 319–329 (2001). https://doi.org/10.1023/A:1012831900153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012831900153

Navigation