Population and Environment

, Volume 23, Issue 2, pp 139–156 | Cite as

Changing Industrial Metabolism: Methods for Analysis

  • Marco A. Janssen
  • Jeroen C. J. M. van den Bergh
  • Pieter J. H. van Beukering
  • Rutger Hoekstra


Research in the field of “industrial metabolism” traditionally has been focused on measuring and describing physical flows of economic systems. The “metabolism” of economic systems, however, changes over time, and measuring material flows is insufficient to understand this process. Understanding the relation between economic activities and material flows can help to unravel the socio-economic causes of these physical flows. Three issues are addressed: The importance of spatial scales and trade flows, empirical analysis of relations between economic development and material flows, and treatment of behaviour of and interactions between stakeholders. For each of these issues, methods for analysis are suggested.

industrial metabolism material flows structural decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albala-Betrand, J.M. (1999). Structural change in Chile, 1960-1990. Economic Systems Research, 11, 301-319.Google Scholar
  2. Anderson, P.W., Arrow, K., & Pines, D. (1988). The Economy as an Evolving Complex System. Redwood City, CA: Addison Wesley.Google Scholar
  3. Ang, B.W., & Lee, P. W. (1996). Decomposition of industrial energy consumption, the energy coefficient approach. Energy Economics 18, 129-143.Google Scholar
  4. Arthur, W.B., S. N. Durlauf, & D. Lane (1997). The Economy as an Evolving Complex Systems II. Redwood City, CA: Addison Wesley.Google Scholar
  5. Axelrod, R. (1997). The Complexity of Cooperation, Agent-Based Models of Competition and Collaboration. Princeton, NJ: Princeton University Press.Google Scholar
  6. Ayres, R.U. (1978). Resources, environment, and economics, application of the materials/energy balance principle. New York: John Wiley and Sons.Google Scholar
  7. Ayres, R.U. (1994). Industrial metabolism. In R.U. Ayres & U.E. Simonis (Eds.), Industrial metabolism-restructuring for sustainable development. Tokyo: United Nations University Press.Google Scholar
  8. Ayres, R.U. (1998). Industrial metabolism, work in progress. In J.C.J.M van den Bergh & M.W. Hofkes (Eds.), Theory and Implementation of Economic Models for Sustainable Developments, 195-228. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  9. Ayres, R.U. & Kneese, A. V. (1969). Production, consumption and externalities. American Economic Review, 59, 282-297.Google Scholar
  10. Ayres, R.U., & Simonis, U. E. (Eds.). (1994). Industrial metabolism-Restructuring for sustainable development. Tokyo: United Nations University Press.Google Scholar
  11. Basu, N., Pryor, R., & Quint, T. (1998). ASPEN, A Microsimulation Model of the Economy. Computational Economics, 12, 223-241.Google Scholar
  12. Beukering, P.J.H. van, van den Bergh, J.C.J.M., Janssen, M. A., & Verbruggen, H. (2001). International material-product chains, an alternative perspective on international trade and trade theories.Google Scholar
  13. Beukering, P.J.H., & Bouman, M. (2000). Empirical Evidence in International Trade and Recycling of Secondary Materials. Washington, DC: World Bank Working Paper, Environment Department, The World Bank.Google Scholar
  14. Beukering, P.J.H. van, & Duraiappah, A. (1998). The Economic and Environmental Impact of Wastepaper Trade and Recycling in India, A Material Balance Approach. Journal of Industrial Ecology, 2(2), 23-42.Google Scholar
  15. Bergh, J.C.J.M. van den, & Verbruggen, H. (1999). Spatial sustainability, trade and indicators: A critique on the ecological footprint indicator. Ecological Economics, 29, 61-72.Google Scholar
  16. Bouman, M., Heijungs, R., van der Voet, E., Bergh, J.C.J.M. van den, & Huppes, G. (2000). Material flows and economics models, an analytical comparison of SFA, LCA and partial equilibrium models. Ecological Economics, 32, 195-216.Google Scholar
  17. Bruyn, S.M. de (1999). Economic growth and the environment, An empirical analysis. Amsterdam: Tinbergen Institute Research Series, no. 216, Thesis Publishers.Google Scholar
  18. Casler, S. (2001). Interaction terms and structural decomposition: an application to the defense cost of oil. In: E. Dietzenbacher & M. Lahr (Eds.), Input-output Analysis, Frontiers and Extensions. London: Macmillan.Google Scholar
  19. Casler, S., & Rose, A. (1998). Carbon dioxide emissions in the US economy. Environmental and Resource Economics, 11(3-4), 349-363.Google Scholar
  20. Epstein, J., & Axtell, R. (1996). Growing Artificial Societies: Social Science from the Bottom up. Cambridge, MA: MIT Press.Google Scholar
  21. Frosch, R.A., Clark, W.C., Crawford, J., Tschang, T.T., & Weber, A. (1996). The Industrial Ecology of Metals: A reconnaissance. From a talk delivered at the Royal Society/Royal Academy of Engineering meeting, May 29-30, London, U.K.Google Scholar
  22. Georgescu-Roegen, N. (1971). The Entropy Law and the Economic Process. Cambridge, MA: Harvard University Press.Google Scholar
  23. Georgescu-Roegen, N. (1976). Energy and Economic Myths: Institutional and Economic Essays. New York: Pergamon Press.Google Scholar
  24. Gilbert, N., & Troitzsch, K. G. (1999). Simulation for the Social Scientists. London: Open University Press.Google Scholar
  25. Grübler, A. (1998). Technology and Global Change. Cambridge, UK: Cambridge University Press.Google Scholar
  26. Holland, J.H. (1992). Complex Adaptive Systems. Daedalus, 121(1), 17-30.Google Scholar
  27. Jager, W. (2000). Modelling consumer behaviour. PhD thesis, University of Groningen.Google Scholar
  28. Janssen, M.A. (1998). Use of Complex Adaptive Systems for Modeling Global Change. Ecosystems, 1, 457-463.Google Scholar
  29. Janssen, M.A. (2001). Modeling human dimensions of global environmental change. In R. E. Munn (Ed.), Encyclopedia of Global Environmental Change. Chichester, UK: John Wiley and Sons.Google Scholar
  30. Janssen, M.A., & Bergh, J.M.J.M. van den (1999). SIMBIOSES, Modelling Industrial Metabolism in a Multi-Regional Economic System. Discussion paper TI-99-060/3. Amsterdam/Rotterdam: Tinbergen Institute.Google Scholar
  31. Kandelaars, P.P.A.A.H. (1999). Economic Models of Material-Product Chains for Environmental Policy Analysis. Dordrecht, the Netherlands: Kluwer Academic Publishers.Google Scholar
  32. Kellow, A. (1999). Baptists and bootleggers? The Basel Convention and metals recycling trade. Agenda, 6(1), 29-38.Google Scholar
  33. Kirman, A. (1997). The economy as an evolving network. Journal of Evolutionary Economics, 7, 339-353.Google Scholar
  34. Kneese, A.V., Ayres, R. U., & d'Arge, R. C. (1970). Economics and the Environment: A Materials Balance Approach. Baltimore: John Hopkins Press.Google Scholar
  35. Konijn, P.J.A., de Boer, S., & van Dalen, J. (1995). Material flows and input-output analysis, methodological description and empirical results. Statistics Netherlands. Notanr. 006-95-EIN-PNR/int and BPA-nr, 698-95-EIN.PNR/int.Google Scholar
  36. Leontief, W., & Ford, D. (1972). Air Pollution and Economic Structure: Empirical Results of Input-Output Computations. Geneva: Input-output Techniques.Google Scholar
  37. Lin, X., & Polenske, K. R. (1995). Input-output anatomy of China's energy use changes in the 1980's. Economic Systems Research, 7, 67-83.Google Scholar
  38. Miller, R.E., & Blair, P. D. (1985). Input-Output Analysis: Foundations and Extensions. Englewood-Cliffs, NJ: Prentice-Hall.Google Scholar
  39. Noorman, K.J., & Schoot Uiterkamp, A.J.M. (Eds.) (1998). Green Households? Domestic Consumers, Environment and Sustainability. London: Earthscan Publications Ltd.Google Scholar
  40. Oosterhaven, J., & Hoen, A. R. (1998). Preferences, technology, trade and real income changes in the European Union, an intercountry decomposition analysis for 1975-1985. Annals of Regional Science, 32, 505-524.Google Scholar
  41. Oosterhaven, J., & Linden, J. van der (1997). European technology, trade and income changes for 1975-1985: an intercountry input-output decomposition. Economic Systems Research, 9, 393-411.Google Scholar
  42. Rohatgi, P., Rohatgi, K., & Ayres, R. U. (1998). Materials futures, Pollution prevention, recycling, and improved functionality. In R.U. Ayres (Ed.), Eco-restructuring, Implications for sustainable development, 109-148. Tokyo: United Nations University Press.Google Scholar
  43. Rose, A., & Casler, S. (1996). Input-output structural decomposition analysis, A critical appraisal. Economi Systems Research, 8(1).Google Scholar
  44. Rose, A., & Chen, C. Y. (1991). Sources of change in energy use in the US economy, 1972-1982: A structural decomposition analysis. Resources and Energy, 13, 1-21.Google Scholar
  45. Stahmer, C., Kuhn, M., & Braun, N. (1997). Physical input-output tables for Germany, 1990. Prepared for DG XI and Eurostat by the Geramd Federal Statistics Office. Working paper No 2/1998/B/1, 19 January.Google Scholar
  46. Stigliani, W.M., Doelman, P. Salomons, W., Schulin, R., Smidt, G.R.B., & Zee, S.W.A.T.M. van der (1991). Chemical time bomb: Predicting the unpredictable. Environment, 33, 26-30.Google Scholar
  47. Wackernagel, M., & Rees. E. E. (1996). Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Island: New Society Publishers.Google Scholar
  48. Waldrop, M. (1992). Complexity: The Emerging Science at the Edge of Order and Chaos. New York: Simon and Schuster.Google Scholar
  49. Wier, M., & Hasler, B. (1999). Accounting for nitrogen in Denmark: A structural decomposition analysis. Ecological Economics, 30, 317-331.Google Scholar

Copyright information

© Human Sciences Press, Inc. 2001

Authors and Affiliations

  • Marco A. Janssen
    • 1
  • Jeroen C. J. M. van den Bergh
    • 2
  • Pieter J. H. van Beukering
    • 2
  • Rutger Hoekstra
    • 2
  1. 1.Department of Spatial EconomicsVrije UniversiteitAmsterdam
  2. 2.Vrije UniversiteitAmsterdam

Personalised recommendations