Skip to main content
Log in

Original Research Report: Structure-Function Analysis of the ArsA ATPase: Contribution of Histidine Residues

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The ArsA ATPase is the catalytic subunit of the ArsAB oxyanion pump in Escherichia coli that is responsible for extruding arsenite or antimonite from inside the cell, thereby conferring resistance. Either antimonite or arsenite stimulates ArsA ATPase activity. In this study, the role of histidine residues in ArsA activity was investigated. Treatment of ArsA with diethyl pyrocarbonate (DEPC) resulted in complete loss of catalytic activity. The inactivation could be reversed upon subsequent incubation with hydroxylamine, suggesting specific modification of histidine residues. ATP and oxyanions afforded significant protection against DEPC inactivation, indicating that the histidines are located at the active site. ArsA has 13 histidine residues located at position 138, 148, 219, 327, 359, 368, 388, 397, 453, 465, 477, 520, and 558. Each histidine was individually altered to alanine by site-directed mutagenesis. Cells expressing the altered ArsA proteins were resistant to both arsenite and antimonite. The results indicate that no single histidine residue plays a direct role in catalysis, and the inhibition by DEPC may be caused by steric hindrance from the carbethoxy group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bhattacharjee, H., Li, J., Ksenzenko, M. Y., and Rosen, B. P. (1995). J. Biol. Chem. 270, 11245–11250.

    Google Scholar 

  • Bhattacharjee, H., and Rosen, B. P. (1996). J. Biol. Chem. 271, 24465–24470.

    Google Scholar 

  • Chen, C. M., Misra, T. K., Silver, S., and Rosen, B. P. (1986). J. Biol. Chem. 261, 15030–15038.

    Google Scholar 

  • Chung, C. T., Niemela, S. L., and Miller, R. H. (1989). Proc. Natl. Acad. Sci. U.S.A. 86, 2172–2175.

    Google Scholar 

  • Dey, S., Dou, D., and Rosen, B. P. (1994). J. Biol. Chem. 269, 25442–25446.

    Google Scholar 

  • Drohat, A. C., Jagadeesh, J., Ferguson, E., and Stivers, J. T. (1999). Biochemistry 38, 11866–11875.

    Google Scholar 

  • Eyzaguirre, J. (1987). Chemical Modification Of Enzymes: Active Site Studies, Halsted Press, New York.

    Google Scholar 

  • Hedges, R. W., and Baumberg, S. (1973). J. Bacteriol. 115, 459–460.

    Google Scholar 

  • Hsu, C. M., and Rosen, B. P. (1989). J. Biol. Chem. 264, 17349–17354.

    Google Scholar 

  • Jia, Y., Kappock, T. J., Frick, T., Sinskey, A. J., and Stubbe, J. (2000). Biochemistry 39, 3927–3936.

    Google Scholar 

  • Karkaria, C. E., Chen, C. M., and Rosen, B. P. (1990). J. Biol. Chem. 265, 7832–7836.

    Google Scholar 

  • Kaur, P., and Rosen, B. P. (1992). J. Biol. Chem. 267, 19272–19277.

    Google Scholar 

  • Lesburg, C. A., Huang, C., Christianson, D. W., and Fierke, C. A. (1997). Biochemistry 36, 15780–15791.

    Google Scholar 

  • Li, J., and Rosen, B. P. (2000). Mol. Microbiol. 35, 361–367.

    Google Scholar 

  • Lundblad, R. L. (1995). Techniques in Protein Modification, CRC Press, Florida.

    Google Scholar 

  • Miles, E. W. (1977). Methods Enzymol. 47, 431–442.

    Google Scholar 

  • Mobley, H. L., and Rosen, B. P. (1982). Proc. Natl. Acad. Sci. U.S.A. 79, 6119–6122.

    Google Scholar 

  • Penefsky, H. S. (1977). J. Biol. Chem. 252, 2891–2899.

    Google Scholar 

  • Quirk, D. J., Park, C., Thompson, J. E., and Raines, R. T. (1998). Biochemistry 37, 17958–17964.

    Google Scholar 

  • Rosen, B. P., Bhattacharjee, H., Zhou, T., and Walmsley, A. R. (1999). Biochim. Biophys. Acta 1461, 207–215.

    Google Scholar 

  • Rosen, B. P., Weigel, U., Karkaria, C., and Gangola, P. (1988). J. Biol. Chem. 263, 3067–3070.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • San Francisco, M. J., Hope, C. L., Owolabi, J. B., Tisa, L. S., and Rosen, B. P. (1990). Nucleic Acids Res. 18, 619–624.

    Google Scholar 

  • Silver, S., Budd, K., Leahy, K. M., Shaw, W. V., Hammond, D., Novick, R. P., Willsky, G. R., Malamy, M. H., and Rosenberg, H. (1981). J. Bacteriol. 146, 983–996.

    Google Scholar 

  • Tisa, L. S., and Rosen, B. P. (1990). J. Biol. Chem. 265, 190–194.

    Google Scholar 

  • Vinarov, D. A., and Nowak, T. (1999). Biochemistry 38, 12138–12149.

    Google Scholar 

  • Vogel, G., and Steinhart, R. (1976). Biochemistry 15, 208–216.

    Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982). EMBO J. 1, 945–951.

    Google Scholar 

  • Walmsley, A. R., Zhou, T., Borges-Walmsley, M. I., and Rosen, B. P. (1999). J. Biol. Chem. 274, 16153–16161.

    Google Scholar 

  • Wu, J., and Rosen, B. P. (1993). Mol. Microbiol. 8, 615–623.

    Google Scholar 

  • Zhou, T., Liu, S., and Rosen, B. P. (1995). Biochemistry 34, 13622–13626.

    Google Scholar 

  • Zhou, T., and Rosen, B. P. (1997). J. Biol. Chem. 272, 19731–19737.

    Google Scholar 

  • Zhou, T., and Rosen, B. P. (1999). J. Biol. Chem. 274, 13854–13858.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, H., Rosen, B.P. Original Research Report: Structure-Function Analysis of the ArsA ATPase: Contribution of Histidine Residues. J Bioenerg Biomembr 33, 459–468 (2001). https://doi.org/10.1023/A:1012818920027

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012818920027

Navigation