Skip to main content
Log in

Functionalized surfaces for optical biosensors: Applications to in vitro pesticide residual analysis

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Functionalized biosensing surfaces were developed for chemiluminescent immunoassay of pesticides. Two approaches to construct functionalized surfaces were tested: (i) pesticide is immobilized to the surface and interacts with a labeled antibody; (ii) antibody is immobilized and interacts with a labeled pesticide. As labels alkaline phosphatase and peroxidase were used with their corresponding substrates CSPD and luminol, respectively. Light produced by chemiluminescent substrate was detected by a thermoelectrically cooled CCD camera or a photomultiplier. The best detection limit 0.00001 ng/ml was obtained using antibodies immobilized to dextran-enhanced surface. Completely renewable surface was obtained using reversible lectin-monosaccharide interaction, one surface was used for 200 analyses without any loss of binding capacity. Most favorable stability and cost per analysis was achieved with molecularly imprinted polymer (MIP) instead of antibody. The functionalized biosensing surfaces were prepared to detect 2,4-dichlorophenoxyacetic (2,4-D) acid as a model pesticide. The developed concepts are, however, generally applicable to other pesticides and to other optical formats, e.g. optical fiber.

© 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. He, Neurotoxicology 21 (2000) 829.

    Google Scholar 

  2. C. Colosio, E. Corsini, W. Barcellini and M. Maroni, Toxicol. Lett. 108 (1999) 285.

    Google Scholar 

  3. T. M. Phillips, J. Exp. Anal. Env. Epidemiol. 10 (2000) 769.

    Google Scholar 

  4. J. Gomes, O. Lloyd, M. D. Revitt and M. Basha, Scand. J. Work Env. & Health. 24 (1998) 213.

    Google Scholar 

  5. E. Hogendoorn and P. Zooen, J. Chrom. A 892 (2000) 435.

    Google Scholar 

  6. I. Surugiu, B. Danielsson, L. Ye, K. Mosbach and K. Haupt, Anal. Chem. 73 (2001) 487.

    Google Scholar 

  7. D. F. Rinder and J. R. Fleeker, Bull. Environ. Contam. Toxicol. 26 (1981) 27.

    Google Scholar 

  8. D. Knopp, P. Nuhn and H. Dobberkan, Arch. Toxicol. 58 (1985) 27.

    Google Scholar 

  9. A. N. Zherdev, B. B. Dzantiev and J. N. Trubaceva, Anal. Chim. Acta 237 (1997) 131.

    Google Scholar 

  10. B. Danielsson, I. Surugiu, A. Dzgoev, M. Mecklenburg and K. Ramanathan, Anal. Chim. Acta. 426 (2001) 227.

    Google Scholar 

  11. Z. P. Chen, D. L. Kaplan, H. Gao, J. Kumar, K. A. Marx and S. S. K. Tripathy, Mat. Sci. & Eng. C 4 (1996) 155.

    Google Scholar 

  12. A. Dzgoev, M. Mecklenburg, P.-O. Larsson and B. Danielsson, Anal. Chem. 68 (1996) 3364.

    Google Scholar 

  13. M. Y. Rubtsova, J. V. Samsonova, A. M. Egorov and R. D. Schmid, Food. Agric. Immunol. 10 (1998) 223.

    Google Scholar 

  14. M. Minunni, P. Skladal and M. Mascini, Anal. Lett. 27 (1994) 1475.

    Google Scholar 

  15. A. Dzgoev, I. G. Gazaryan, L. M. Lagrimini, K. Ramanathan and B. Danielsson, Anal. Chem. 71 (1999) 5258.

    Google Scholar 

  16. A. M. Jimenez and M. J. Navas, Crit. Rev. Anal. Chem. 27 (1997) 291.

    Google Scholar 

  17. C. Mouvet, R. D. Harris, C. Maciag, B. J. Luff, S. J. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, R. Abuknesha and G. Ismail, Anal. Chim. Acta. 338 (1997) 109.

    Google Scholar 

  18. M. Minunni and M. Mascini, Anal. Lett. 26 (1993) 1441.

    Google Scholar 

  19. R. P. Revoltella, L. L. Robbio and B. Liedberg, Biotheraphy 11 (1998) 135.

    Google Scholar 

  20. O. Brueggeman, R. Freitag, M. Whitcombe and E. Vulfson, J. Chromatogr. A 781 (1997) 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svitel, J., Surugiu, I., Dzgoev, A. et al. Functionalized surfaces for optical biosensors: Applications to in vitro pesticide residual analysis. Journal of Materials Science: Materials in Medicine 12, 1075–1078 (2001). https://doi.org/10.1023/A:1012810527291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012810527291

Keywords

Navigation