Skip to main content
Log in

Adhesion strength of individual human bone marrow cells to fibronectin. Integrin β1-mediated adhesion

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this work was to study the adhesion strength of individual bone marrow cells, using a micropipette aspiration technique. The adhesion strength of the primary human bone marrow cells to fibronectin-coated substrate, by blocking the β1 integrin with and without antibodies, was also determined. Human bone marrow stromal cells of the second passage were seeded at a density of 500 cells/cm2 on two different substrates: plastic culture dish (PCD) and PCD coated with fibronectin. In short adhesion times (15–180 min) the cells attached without spreading and remained almost spherical. A negative pressure of about 3500 Pa was applied, through the micropipette, on individual bone marrow cells and the detach process was recorded. The tip of the micropipette was bent at an 130° angle to the corpus of the pipette and it was manipulated to be on the upper side of the cell and vertically to the bottom of the plate. It was observed from the experiments that the cells exhibited smaller adhesion strength at early adhesion times (30–85 min). After 85 min the adhesion strength increased abruptly and remained relatively constant for the adhesion period from 85 to 180 min for all substrates. Monoclonal antibodies against integrin subunit β1 were used for integrin blocking experiments. The data suggested that the attachment of osteoblasts to a plastic culture dish without fibronectin coating occurred earlier than to the one coated with fibronectin PCD. In longer adhesion time the coating with fibronectin increased the adhesion strength at 107%. Blocking of integrin β1 with monoclonal antibody resulted in decrease of the adhesion strength at 49%.

© 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Gold and E. Pearlstein, Biochem. J. 186 (1980) 551.

    Google Scholar 

  2. K. Burridge, K. Fath, T. Kelly, T. Nuckolls and C. Turner, Annu. Rev. Biol. 4 (1988) 4871.

    Google Scholar 

  3. A. S. Menko and D. Boettiger, Cell 51 (1987) 51.

    Google Scholar 

  4. J. C. Adams and F. M. Watt, ibid. 63 (1990) 425.

    Google Scholar 

  5. C. H. Streuli, N. Bailey and M. J. Bissell, J. Cell Biol. 115 (1991) 1383.

    Google Scholar 

  6. Z. Werb, P. M. Tremble, O. Behrendtsene, Crowley and C. H. Damsky, ibid. 109 (1989) 877.

    Google Scholar 

  7. X. Zhu, M. Ohtsubo, R. M. Bohmer, J. M. Roberts and R. K. Assoian, ibid. 133 (1996) 391.

    Google Scholar 

  8. I. Degasne, M. F Basle, V. Demais, G. Hure, G. M. Lesourd, B. Grolleau, L. Mercier and D. Chappar, Calcif. Tissue Int. 64(6) (1999) 499.

    Google Scholar 

  9. F. Grinnell and M. K. Feld, J. Biol. Chem. 257(9) (1982) 4888.

    Google Scholar 

  10. D. A. Puleo and R. Bizios, Bone Miner. 18(3) (1992) 215.

    Google Scholar 

  11. J. Sodek, Q. Zhang and H. A. Goldberg, et al., in “The Bone-Biomaterial Interface,” edited by J. E. Davies (University of Toronto Press, Toronto, 1991) p. 97.

    Google Scholar 

  12. A. J. Garcia, P. Ducheyne and D. Boettinger, Biomaterials 18(16) (1997) 1091.

    Google Scholar 

  13. G. A. Truskey and J. S. Pirone, J. Biomed. Mater. Res. 24 (1990)

  14. J. Garcia and D. Boettiger, Biomaterials 20(11) (1999) 2427.

    Google Scholar 

  15. C. T. Brighton and S. A. Albelda, J. Orthop. Res. 10 (1994) 766.

    Google Scholar 

  16. D. E. Hughes, D. M. Salter, S. Dedhar and R. J. Simson, Bone Min. Res. 8 (1993) 527.

    Google Scholar 

  17. R. Hynes, Cell 69 (1992) 11.

    Google Scholar 

  18. R. K. Sinha and R. S. Tuan, Bone 18 (1996) 451.

    Google Scholar 

  19. A. Rezania and K. E. Healy, J. Orthop. Res. 17(4) (1999) 615.

    Google Scholar 

  20. R. M. Hochmuth, J. Biomech. 33 (2000) 15.

    Google Scholar 

  21. J. Y. Shao and R. M. Hochmuth, Biophysic. J. 71 (1996) 2892.

    Google Scholar 

  22. G. Athanassiou, N. Zoubos and Y. Missirlis, Nouv. Rev. Fr. Hematol. 33 (1991) 15.

    Google Scholar 

  23. G. Athanassiou, P. Matsoyka, V. Kaleridis and Y. Missirlis, Clin. Hemorheol. 22 (2000) 35.

    Google Scholar 

  24. L. S. Kaplow. NY Acad. Sci. 155 (1968) 911.

    Google Scholar 

  25. D. E. Mcdonald, B. Markovic, M. Allen, P. Somasundaran and A. L. Boskey, J. Biomed. Mater. Res. 41 (1998) 120.

    Google Scholar 

  26. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoyloy, J. Amedee and Y. F. Missirlis, Biomaterials 22(11) (2001) 1241.

    Google Scholar 

  27. D. D. Deligianni, N. Katsala, P. Koutsoukos and Y. F. Missirlis, ibid. 22 (2000) 87.

    Google Scholar 

  28. C. P. M. Reutelingsperger, R. G. J. Van Cool, V. Heijnen, P. FREDERIC and T. Lindhout, J. Mater. Sci.: Mater. Med. 5 (1994) 361.

    Google Scholar 

  29. K-L. P. Sung, M. K. Kwan, F. Maldonato and W. H. Akeson, J. Biomech. Engng. 116 (1994).

  30. S. Y. Kwon, H. Takei, D. P. Pioletti, T. Lin, Q. J. Ma, W. H. Akeson D. J. Wood and K-L. P. Sung, J. Orthop. Res. 18 (2000) 203.

    Google Scholar 

  31. L. Yang, C. M. Tsai, A. H. Hsieh, V. S. Lin, W. H. Akeson and K. L. Sung, ibid. 17(5) (1999) 755.

    Google Scholar 

  32. R. K. Sinha and R. S. Tuan, Bone 18 (1996) 451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athanassiou, G., Deligianni, D. Adhesion strength of individual human bone marrow cells to fibronectin. Integrin β1-mediated adhesion. Journal of Materials Science: Materials in Medicine 12, 965–970 (2001). https://doi.org/10.1023/A:1012809115479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012809115479

Keywords

Navigation