Skip to main content
Log in

Amino Acid Derivatives as Protein Side-Chain Model Compounds: The Partial Molar Volumes and Heat Capacities of Some N-Acetyl-N′-methyl Amino Acid Amides in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The partial molar heat capacities, C o p,2, and partial molar volumes, V o 2, at infinite dilution have been determined for the compounds N-acetyl-N′-methylglycinamide, N-acetyl-N′-methylalaninamide, N-acetyl-N′-methylvalinamide, and N-acetyl-N′-methylleucinamide in aqueous solution at the temperatures 15, 25, 40, and 55°C. The C o p,2 and V o 2 results have been used to calculate amino acid side-chain contributions to the thermodynamic properties. These side-chain contributions are compared with those derived in previous work using thermodynamic data for the corresponding acetylated primary amides and with results reported using peptide model compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. H. Spink and I. Wadsö, J. Chem. Thermodyn. 7, 561 (1975).

    Google Scholar 

  2. M. Iqbal and R. E. Verrall, J. Biol. Chem. 263, 4159 (1988).

    Google Scholar 

  3. C. Jolicoeur and J. Boileau, Can. J. Chem. 56, 2707 (1978).

    Google Scholar 

  4. A. K. Mishra and J. C. Ahluwalia, J. Phys. Chem. 88, 86 (1984).

    Google Scholar 

  5. K. P. Murphy and S. J. Gill, J. Chem. Thermodyn. 21, 903 (1989).

    Google Scholar 

  6. G. M. Blackburn, T. H. Lilley, and E. Walmsley, J. Chem. Soc. Faraday Trans. 78, 1641 (1982).

    Google Scholar 

  7. M. Kikuchi, M. Sakurai, and K. Nitta, J. Chem. Eng. Data 41, 1439 (1996).

    Google Scholar 

  8. G. Barone, G. Castronuovo, P. Del Vecchio, and C. Giancola, J. Chem. Soc. Faraday Trans. 1 85, 2087 (1989).

    Google Scholar 

  9. G. R. Hedwig, J. Chem. Soc. Faraday Trans. 89, 2761 (1993).

    Google Scholar 

  10. A. W. Hakin, M. M. Duke, S. A. Klassen, R. M. McKay, and K. E. Preuss, Can. J. Chem. 72, 362 (1994).

    Google Scholar 

  11. T. V. Chalikian, V. S. Gindikin, and K. J. Breslauer, Biophys. Chem. 75, 57 (1998).

    Google Scholar 

  12. D. P. Kharakoz, Biophys. Chem. 34, 115 (1989).

    Google Scholar 

  13. G. I. Makhatadze, S. J. Gill, and P. L. Privalov, Biophys. Chem. 38, 33 (1990).

    Google Scholar 

  14. T. V. Chalikian, A. P. Sarvazyan, and K. J. Breslauer, Biophys. Chem. 51, 89 (1994).

    Google Scholar 

  15. D. Shortle, FASEB J. 10, 27 (1996).

    Google Scholar 

  16. P. L. Privalov, J. Chem. Thermodyn. 29, 447 (1997).

    Google Scholar 

  17. T. H. Lilley, in Biochemical Thermodynamics, 2nd edn., M. N. Jones, ed. (Elsevier, Amsterdam, 1988), Chap. 1.

    Google Scholar 

  18. D. P. Kharakoz, Biochemistry 36, 10276 (1997).

    Google Scholar 

  19. M. Häckel, H.-J. Hinz, and G. R. Hedwig, J. Mol. Biol. 291, 197 (1999).

    Google Scholar 

  20. M. Häckel, H.-J. Hinz, and G. R. Hedwig, Biophys. Chem. 82, 35 (1999).

    Google Scholar 

  21. A. W. Hakin and G. R. Hedwig, Biophys. Chem. 89, 253 (2001).

    Google Scholar 

  22. P. L. Privalov, Advan. Protein Chem. 33, 167 (1979).

    Google Scholar 

  23. J. Gómez, V. J. Hilser, D. Xie, and E. Freire, Proteins: Struct. Funct. Genet. 22, 404 (1995).

    Google Scholar 

  24. G. I. Makhatadze and P. L. Privalov, J. Mol. Biol. 213, 375 (1990).

    Google Scholar 

  25. A. W. Hakin and G. R. Hedwig, Phys. Chem. Chem. Phys. 2, 1795 (2000).

    Google Scholar 

  26. G. M. Blackburn, T. H. Lilley, and P. J. Milburn, J. Chem. Soc. Faraday Trans. 1 81, 2191 (1985).

    Google Scholar 

  27. A. H. Sijpkes and G. Somsen, J. Chem. Soc. Faraday Trans. 1 85, 2563 (1989).

    Google Scholar 

  28. P. Picker, E. Tremblay, and C. Jolicoeur, J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  29. A. W. Hakin, M. G. Kowalchuck, J. L. Liu, and R. A. Marriott, J. Solution Chem. 29, 131 (2000).

    Google Scholar 

  30. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  31. J. E. Desnoyers, C. De Vissier, G. Perron, and P. Picker, J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  32. G. S. Kell, J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  33. T. E. Leslie and T. H. Lilley, Biopolymers 24, 695 (1985).

    Google Scholar 

  34. H. F. Stimson, Amer. J. Phys. 23, 614 (1955).

    Google Scholar 

  35. T. H. Lilley, in The Chemistry and Biochemistry of the Amino Acids, G. C. Barrett, ed. (Chapman & Hall, London, 1985), Chap. 21.

    Google Scholar 

  36. J. F. Reading and G. R. Hedwig, J. Chem. Soc. Faraday Trans. 86, 3117 (1990).

    Google Scholar 

  37. M. Häckel, G. R. Hedwig, and H.-J. Hinz, Biophys. Chem. 73, 163 (1998).

    Google Scholar 

  38. S. Cabani, P. Gianni, V. Mollica, and L. Lepori, J. Solution Chem. 10, 563 (1981).

    Google Scholar 

  39. L. Lepori and P. Gianni, J. Solution Chem. 29, 405 (2000).

    Google Scholar 

  40. G. R. Hedwig, J. F. Reading, and T. H. Lilley, J. Chem. Soc. Faraday Trans. 87, 1751 (1991).

    Google Scholar 

  41. T. V. Chalikian, A. P. Sarvazyan, T. Funck, and K. J. Breslauer, Biopolymers 34, 541 (1994).

    Google Scholar 

  42. H. Høiland, in Thermodynamic Data for Biochemistry and Biotechnology, H.-J. Hinz, ed. (Springer-Verlag, Berlin, 1986), Chap. 2.

    Google Scholar 

  43. M. Häckel, H.-J. Hinz, and G. R. Hedwig, Phys. Chem. Chem. Phys. 2, 4843 (2000).

    Google Scholar 

  44. C. J. Downes and G. R. Hedwig, Biophys. Chem. 55, 279 (1995).

    Google Scholar 

  45. M. Häckel, H.-J. Hinz, and G. R. Hedwig, Thermochim. Acta 308, 23 (1998).

    Google Scholar 

  46. M. Häckel, H.-J. Hinz, and G. R. Hedwig, Phys. Chem. Chem. Phys. 2, 5463 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J.L., Hakin, A.W. & Hedwig, G.R. Amino Acid Derivatives as Protein Side-Chain Model Compounds: The Partial Molar Volumes and Heat Capacities of Some N-Acetyl-N′-methyl Amino Acid Amides in Aqueous Solution. Journal of Solution Chemistry 30, 861–883 (2001). https://doi.org/10.1023/A:1012767413357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012767413357

Navigation