Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. N. V. Bagotskaya, V. E. Levit, and I. S. Losev, “On a generalization of matroids that ensures the applicability of the dynamic programming method,” in: Systems of Information Transmission and Processing, Part 2 [in Russian] (1988), pp. 33–36.

  2. V. I. Baranov and B. S. Stechkin, Extremal Combinatorial Problems and Their Applications [in Russian], Moscow, Nauka (1989).

    Google Scholar 

  3. V. A. Bondarenko, “Neighbor vertices of polygons generated by matroids,” in: Problems of Group Theory and Hogomologic Algebra, Yaroslavl' (1982), pp. 66–68.

  4. I. M. Gel'fand and A. V. Zelevinskii, “Algebraic and combinatorial aspects of the general theory of hypergeometrical functions,” Funkt.Anal., 20, No. 3, 17–34 (1986).

    Google Scholar 

  5. I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and the strates of a torus on homogeneous compact manifolds,” Preprint, Scientific Council “Cybernetics” of the Acad. Sci. USSR, Moscow (1986).

    Google Scholar 

  6. N. I. Glebov, “On a class of problems of convex integer programming,” Control Systems (Novosibirsk), 11, 38–42 (1973).

    Google Scholar 

  7. N. I. Glebov, “On the minimization of a convex separable function on an intersection of polymatroids,” Control Systems (Novosibirsk), 23, 33–43 (1983).

    Google Scholar 

  8. N. I. Glebov, “Basic systems and the problem of minimization on an intersection of basic systems,” Control Systems (Novosibirsk), 25, 58–67 (1984).

    Google Scholar 

  9. V. P. Grishukhin, “Generators of a cone of submodular functions,” Preprint, Central Economic Mathematical Institute of the Acad. Sci. USSR, Moscow (1982).

    Google Scholar 

  10. V. P. Grishukhin, “Matroids generated by submodular functions,” Preprint, Central Economic Mathematical Institute of the Acad. Sci. USSR, Moscow (1983).

    Google Scholar 

  11. V. P. Grishukhin, “Relevation of the faces of polyhedra,” Optimization, 17, No. 4, 487–499 (1986).

    Google Scholar 

  12. V. P. Grishukhin, “The extremality of the rank function of a connected semimodular lattice,” in: Proceedings of the Seminar in Discrete Mathematics and Its Applications [in Russian], Moscow State Univ., Moscow (1981), p. 265.

    Google Scholar 

  13. V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polyhedra, Graphs, and Optimization (Combinatorial Theory of Polyhedra) [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  14. A. N. Isachenko, “On a criterion for matroids,” Vestn.Belorus.Gos.Univ., Ser. 1, 2, 59–60 (1983).

    Google Scholar 

  15. A. N. Isachenko, “Polynomial reducibility of matroid oracles,” Izv.Belorus.Akad.Nauk, Ser.Fiz.-Mat.Nauk, 6, 33–36 (1984).

    Google Scholar 

  16. A. K. Kel'mans, “Matroids and combinatorial extremal problems,” Preprint, Institute of Control Problems, Moscow (1989).

    Google Scholar 

  17. A. K. Kel'mans, M. V. Lomonosov, and V. P. Polesskii, “On minimal coverings in a matroid,” Probl.Peredachi Inf., 12, No. 3, 94–107 (1976).

    Google Scholar 

  18. A. K. Kel'mans and V. P. Polesskii, “Extremal sets and problems of covering and packing in matroids,” in: Studies of Applied Graph Theory [in Russian], Novosibirsk (1986), pp. 140–168.

  19. M. M. Kovalev, “Polyhedral semimatroids,” Izv.Belorus.Akad.Nauk, Ser.Fiz.-Mat.Nauk, 3, 8–13 (1979).

    Google Scholar 

  20. M. M. Kovalev, Matroids in Discrete Optimization [in Russian], Universitetskoe, Minsk (1987).

    Google Scholar 

  21. M. M. Kovalev and N. N. Pisarchuk, “The matroid approach to decomposition,” Izv.Ross.Akad.Nauk, Tekh.Kibern., 3, 122–134 (1992).

    Google Scholar 

  22. K. A. Rybnikov (Ed.), Combinatorial Analysis.Problems and Exercises [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  23. I. I. Melamed and G. P. Epshtein, Matroids and Discrete Optimization [in Russian], Moscow (1992).

  24. V. P. Polesskii, “On a method for designing a reliable structure of a communication network,” in: Discrete Automata and Communication Networks [in Russian], Nauka, Moscow (1970), pp. 13–19.

    Google Scholar 

  25. V. P. Polesskii, “On a lower bound for the reliability of information networks,” Probl.Peredachi Inf., 7, No. 2, 88–96 (1971).

    Google Scholar 

  26. V. P. Polesskii, “Covering a finite graph by a minimal number of forests,” Probl.Peredachi Inf., 12, No. 2, 76–82 (1976).

    Google Scholar 

  27. V. P. Polesskii, “The structure of necks of a sum of matroids,” Probl.Peredachi Inf., 12, No. 4, 95–104 (1976).

    Google Scholar 

  28. Z. D. Potyagailo, “On the designing of a matroid of states of a dynamic system and algorithms for its analysis,” in: System-Theoretic Methods and Their Applications in Automated Systems [in Russian], Kiev (1983), pp. 27–35.

  29. K. A. Rybnikov (Ed.), Problems of Combinatorial Analysis, New Trends in Foreign Science [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  30. A. M. Rev'yakin, “On the accumulations of combinatorial geometries,” Vestn.MGU, Mat., Mekh., 4, 59–62 (1976).

    Google Scholar 

  31. A. M. Rev'yakin, “On a construction in the categories of combinatorial geometries and mappings,” Dokl.Akad.Nauk SSSR, 229, No. 5, 1055–1058 (1976).

    Google Scholar 

  32. A. M. Rev'yakin, “On one-point extensions of combinatorial geometries,” in: Combinatorial Analysis [in Russian], Moscow State Univ., Moscow, 4 (1976), pp. 64–68.

    Google Scholar 

  33. A. M. Rev'yakin, “A description of factors of combinatorial geometries,” in: Combinatorial Analysis [in Russian], Moscow State Univ., Moscow, 4 (1976), pp. 69–72.

    Google Scholar 

  34. A. M. Rev'yakin, “Some properties and constructions of the category of combinatorial geometries and mappings,” in: Combinatorial Analysis [in Russian], Moscow State Univ., Moscow, 6 (1983), pp. 4–12.

    Google Scholar 

  35. A. M. Rev'yakin, “Semimodular functions and polymatroids,” in: Combinatorial Analysis [in Russian], Moscow State Univ., Moscow, 6 (1983), p. 99.

    Google Scholar 

  36. A. M. Rev'yakin, “Coordinatization and representability of matroids,” in: Combinatorial Analysis [in Russian], Moscow State Univ., Moscow, 8 (1989), pp. 6–37.

    Google Scholar 

  37. A. M. Rev'yakin, “Theoretical structural properties of some combinatorial systems,” in: Proceedings of the Workshop in Discrete Mathematics and Its Applications [in Russian], Moscow State Univ., Moscow (1989), pp. 44–49.

    Google Scholar 

  38. A. M. Rev'yakin, Graphs, Matroids, and Their Engineering Applications [in Russian], MGIET, Moscow (1991).

    Google Scholar 

  39. K. A. Rybnikov, Introduction to Combinatorial Analysis [in Russian], Moscow State Univ., Moscow (1985).

    Google Scholar 

  40. K. A. Rybnikov and A. M. Rev'yakin, “Matroids in engineering problems,” in: Proceedings of the Workshop in Discrete Mathematics and Its Applications [in Russian], Moscow State Univ., Moscow (1989), pp. 272–273.

    Google Scholar 

  41. V. V. Serganova, N. V. Bagotskaya, V. E. Levit, and I. S. Losev, “Greedoids and the greedy algorithm,” in: Systems of Information Transmission and Processing.Part 2 [in Russian], Moscow (1988), pp. 49–52.

  42. L. A. Skornyakov, Elements of Structure Theory [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  43. A. V. Spesivtsev, Greedy Algorithms for Resource Scheduling [in Russian], Malip, Moscow (1993).

    Google Scholar 

  44. B. S. Stechkin, “Embedding theorems for the Möbius functions,” Dokl.Akad.Nauk SSSR, 260, No. 1, 40–44 (1991).

    Google Scholar 

  45. Yu. A. Sushkov, “Matroids and hypergraphs,” Vestn.LGU, 22, 42–46 (1985).

    Google Scholar 

  46. V. E. Tarakanov, Combinatorial Problems and (0, 1)-Matrices [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  47. O. V. Shameeva, “On an algebraic representability of matroids,” Vestn.MGU, Mat., Mekh., 4, 29–34 (1985).

    Google Scholar 

  48. O. V. Shameeva, “Representability of matroids and operations over matroids,” in: Combinatorial Analysis [in Russian], Moscow State Univ., Moscow, 7 (1986), pp. 119–126.

    Google Scholar 

  49. O. V. Shameeva, “On an algebraic representability of the Dilworth truncation of combinatorial geometries,” in: Proceedings of the Workshop in Discrete Mathematics and Its Applications [in Russian], Moscow State Univ., Moscow (1989), pp. 275–276.

    Google Scholar 

  50. B. Achim and K. Walter, “A guided tour through oriented matroid axioms,” Acta Math.Appl.Sin.Engl.Ser., 9, No. 2, 125–134 (1993).

    Google Scholar 

  51. D. M. Acketa, “On the essential flats of geometric lattices,” Publ.Inst.Math., 26, 11–17 (1979).

    Google Scholar 

  52. D. M. Acketa, “On binary paving matroids,” Dicsr.Math., 70, No. 1, 109–110 (1988).

    Google Scholar 

  53. D. M. Acketa, “A classification of interval greedoids on at most 5 elements,” Zb.Rad.Prir.Mat.Fak., Ser.Mat., Univ.Novom Sadu, 18, No. 2, 61–80 (1988).

    Google Scholar 

  54. M. Aigner, Combinatorial Theory, Springer, Berlin (1979).

    Google Scholar 

  55. M. Aigner, “Whitney numbers,” in: Combinatorial Geometries, Cambridge Univ. Press (1987), pp. 139–160.

  56. M. Aigner and T. A. Dowling, “Matching theorem for combinatorial geometries,” Bull.Amer.Math.Soc., 76, No. 1, 57–60 (1970).

    Google Scholar 

  57. M. Aigner and T. A. Dowling, “Matching theory for combinatorial geometries,” Trans.Amer.Math.Soc., 158, No. 1, 231–245 (1971).

    Google Scholar 

  58. M. Alfter, W. Kern, and A. Wanka, “On adjoints and dual matroids,” J.Comb.Theory, B50, No. 2, 208–213 (1991).

    Google Scholar 

  59. K. Rybnikov (Ed.), Combinatorial Analysis.Problems and Solutions, [Russian translation from Spanish], Mir, Moscow (1989).

    Google Scholar 

  60. T. Asano, T. Nishizeki, and P. D. Seymour, “A note on nongraphic matroids,” J.Comb.Theory, B37, No. 3, 290–293 (1984).

    Google Scholar 

  61. N. Biggs, Algebraic Graph Theory, Cambridge Univ. Press, London-New York (1974).

    Google Scholar 

  62. G. Birkho., “Abstract linear dependence and lattices,” Amer.J.Math., 57, 800–804 (1935).

    Google Scholar 

  63. G. Birkho., Lattice Theory, Amer. Math. Soc., Providence, Rhode Island (1967).

    Google Scholar 

  64. R. E. Bixby, “1–Matrices and a characterization of binary matroids,” Discr.Math., 8, 139–145 (1974).

    Google Scholar 

  65. R. E. Bixby, “A simple proof that every matroid is an intersection of fundamental matroids,” Discr.Math., 18, No. 3, 311–312 (1977).

    Google Scholar 

  66. R. E. Bixby, “The solution to a matroid problem of Knuth,” Discr.Math., 21, No. 1, 87–88 (1978).

    Google Scholar 

  67. R. E. Bixby, “On Reid's characterization of the ternary matroids,” J.Comb.Theory, B26, No. 2, 174–204 (1979).

    Google Scholar 

  68. R. E. Bixby and C. R. Coullard, “On chains of 3–connected matroids,” Discr.Appl.Math., 15, Nos. 2–3, 155–166 (1986).

    Google Scholar 

  69. A. Bjorner, “The homology and shellability of matroids and geometric lattices,” in: Matroid Applications, Cambridge Univ. Press (1992), pp. 226–283.

  70. A. Bjorner and G. M. Ziegler, “Introduction to greedoids,” in: Matroid Applications, Cambridge Univ. Press (1992), pp. 284–357.

  71. R. G. Bland, “A combinatorial abstraction of linear programming,” J.Comb.Theory, B23, No. 1, 33–57 (1977).

    Google Scholar 

  72. R. G. Bland and M. Las Vergnas, “Orientability of matroids,” J.Comb.Theory, B24, No. 1, 94–123 (1978).

    Google Scholar 

  73. R. G. Bland and M. Las Vergnas, “Minty colorings and orientations of matroids,” Ann.Acad.Sci. (USA), 319, 86–92 (1979).

    Google Scholar 

  74. A. Bouchet, “Greedy algorithm and symmetric matroids,” Math.Progr., 38, No. 2, 147–159 (1987).

    Google Scholar 

  75. A. Bouchet, A. W. M. Dress, and T. F. Havel, “Δ-Matroids and metroids,” Adv.Math., 91, No. 1, 136–142 (1992).

    Google Scholar 

  76. A. Bouchet and A. Duchamp, “Representability of Δ-matroids over GF(2),” Linear Algebra Appl., 146, 67–78 (1991).

    Google Scholar 

  77. R. A. Brualdi, “Common transversals and strong exchange systems,” J.Comb.Theory, B8, No. 3, 307–329 (1970).

    Google Scholar 

  78. R. A. Brualdi, “Menger's theorem and matroids,” J.London Math.Soc., 4, No. 1, 46–50 (1971).

    Google Scholar 

  79. R. A. Brualdi, “On fundamental transversal matroids,” Proc.Amer.Math.Soc., 45, No. 1, 151–156 (1974).

    Google Scholar 

  80. R. A. Brualdi, “Introduction to matching theory,” in: Combinatorial Geometries, Cambridge Univ. Press (1987), pp. 53–71.

  81. R. A. Brualdi, “Transversal matroids,” in: Combinatorial Geometries, Cambridge Univ. Press (1987), pp. 72–97.

  82. V. Bryant and H. Perfect, Independence Theory in Combinatorics, Chapman and Hall, London (1980).

    Google Scholar 

  83. T. H. Brylawski, “A decomposition for combinatorial geometries,” Trans.Amer.Math.Soc., 171, 235–282 (1972).

    Google Scholar 

  84. T. H. Brylawski, “Modular construction for combinatorial geometries,” Trans.Amer.Math.Soc., 203, 1–44 (1975).

    Google Scholar 

  85. T. H. Brylawski, “An affine representation for transversal geometries,” Stud.Appl.Math., 54, No. 2, 143–160 (1975).

    Google Scholar 

  86. T. H. Brylawski, “A note on Tutte's unimodular representation theorem,” Proc.Amer.Math.Soc., 52, 499–502 (1975).

    Google Scholar 

  87. T. H. Brylawski, “The Tutte polynomial. Matroid theory and its applications,” in Centro Internazionale Matematico Estivo, Liguori editore, Naples (1982), pp. 125–276.

  88. T. H. Brylawski, “Constructions,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 127–223.

  89. T. H. Brylawski, “Appendix of matroid cryptomorphisms,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 298–312.

  90. T. H. Brylawski and D. Kelly, Matroids and Combinatorial Geometries, Univ. North Carolina, Chapel Hill (1980).

    Google Scholar 

  91. T. H. Brylawski and J. Oxley, “The Tutte polynomial and its applications,” in: Matroid Appl., Cambridge Univ. Press (1992), pp. 123–225.

  92. A. Cheung and H. H. Crapo, “On relative position in extensions of combinatorial geometries,” J.Comb.Theory, B44, No. 2, 201–229 (1988).

    Google Scholar 

  93. I. Gessel and G.-C. Rota (Eds.), Classic Papers in Combinatorics, Birkhäuser, Boston (1987).

    Google Scholar 

  94. N. White (Ed.), Combinatorial Geometries, Cambridge Univ. Press (1987).

  95. P. Cordovil and B. Lindström, “Simplicial matroids,” in: Combinatorial Geometries, Cambridge Univ. Press (1987), pp. 98–113.

  96. H. H. Crapo, “Single-element extension of matroids,” J.Res.Nat.Bur.Standards, B69, 55–65 (1965).

    Google Scholar 

  97. H. H. Crapo, “Erecting geometries,” Ann.Acad.Sci. (USA), 175, No. 1, 89–92 (1970).

    Google Scholar 

  98. H. H. Crapo, “Examples and basic concepts,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 1–28.

  99. H. H. Crapo, “Orthogonality,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 76–96.

  100. H. H. Crapo and G.-C. Rota, “On the foundations of combinatorial theory. II. Combinatorial geometries,” Stud.Appl.Math., 49, No. 2, 109–133 (1970).

    Google Scholar 

  101. W. H. Cunningham, “On matroid connectivity,” J.Comb.Theory, B30, No. 1, 94–99 (1981).

    Google Scholar 

  102. W. H. Cunningham, “Improved bounds for matroid partition and intersection algorithms,” SIAM J.Comput., 15, No. 4, 948–957 (1986).

    Google Scholar 

  103. W. H. Cunningham and J. Edmonds, “A combinatorial decomposition theory,” Can.J.Math., 32, No. 3, 734–765 (1980).

    Google Scholar 

  104. J. E. Dawson, “Decomposition of binary matroids,” Combinatorica, 5, No. 1, 1–9 (1985).

    Google Scholar 

  105. J. De Sousa and D. J. A. Welsh, “A characterization of binary transversal structure,” J.Math. Anal.Appl., 40, No. 1, 55–59 (1972).

    Google Scholar 

  106. M. Deza, “Perfect matroid designs,” in: Matroid Applications, Cambridge Univ. Press (1992), pp. 54–72.

  107. T. A. Dowling and W. A. Dening, “Geometries associated with partially ordered sets,” in: Higher Combinatorics, Dordrecht-Boston (1977), pp. 103–116.

  108. T. A. Dowling and D. G. Kelly, “Elementary strong maps and transversal geometries,” Lect.Notes Math., 411, 176–186 (1974).

    Google Scholar 

  109. A. W. M. Dress, “Chirotops and oriented matroids,” Bayr.Math.Schr., No. 21, 14–68 (1986).

  110. J. Edmonds, “Minimum partition of a matroid into independent subsets,” J.Res.Nat.Bur.Standards, B69, 67–77 (1965).

    Google Scholar 

  111. J. Edmonds, “System of distinct representatives and linear algebra,” J.Res.Nat.Bur. Standards, B71, No. 4, 241–245 (1967).

    Google Scholar 

  112. J. Edmonds, “Matroids and the greedy algorithm,” Math.Progr., 1, 127–136 (1971).

    Google Scholar 

  113. J. Edmonds, “Matroid intersection,” Ann.Discr.Math., 4, 39–49 (1979).

    Google Scholar 

  114. J. Edmonds and D. R. Fulkerson, “Transversals and matroid partition,” J.Res.Nat.Bur.Standards, B69, No. 3, 147–153 (1965).

    Google Scholar 

  115. U. Faigle, “Lattices,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 45–61.

  116. U. Faigle, “Matroids in combinatorial optimization,” in: Combinatorial Geometries, Cambridge Univ. Press (1987), pp. 161–210.

  117. J. C. Fournier, “Binary matroids,” in: Combinatorial Geometries, Cambridge Univ. Press (1987), pp. 28–39. 124

  118. S. Fujishige, “Submodular systems and related topics,” Math.Progr.Study, 22, 113–131 (1984).

    Google Scholar 

  119. K. Fukuda, “Oriented matroid programming,” Ph.D.Thesis, Dept. of Combinatorics and Optimization, Univ. Waterloo (1982).

  120. D. Gale, “Optimal assignments in an ordered set: An application of matroid theory,” J.Comb.Theory, 4, 176–180 (1968).

    Google Scholar 

  121. R. Goetschel Jr. and W. Voxman, “Fuzzy matroids,” Fuzzy Sets Syst., 27, 291–302 (1988).

    Google Scholar 

  122. R. Goetschel Jr. and W. Voxman, “Bases of fuzzy matroids,” Fuzzy Sets Syst., 31, No. 2, 253–261 (1989).

    Google Scholar 

  123. R. Goetschel Jr. and W. Voxman, “Fuzzy matroid structures,” Fuzzy Sets Syst., 41, No. 3, 343–357 (1991).

    Google Scholar 

  124. R. Goetschel Jr. and W. Voxman, “Fuzzy rank functions,” Fuzzy Sets Syst., 42, No. 2, 245–258 (1991).

    Google Scholar 

  125. R. Goetschel Jr. and W. Voxman, “Spanning properties for fuzzy matroids,” Fuzzy Sets Syst., 51, No. 3, 313–321 (1992).

    Google Scholar 

  126. G. Gordon, “Algebraic characteristic sets of matroids,” J.Comb.Theory, 44, No. 1, 64–74 (1988).

    Google Scholar 

  127. G. Gordon and L. Traldi, “Generalized activities and the Tutte polynomial,” Discr.Math., 85, No. 2, 167–176 (1991).

    Google Scholar 

  128. G. Gratzer, General Lattice Theory, Birkhäuser Verlag, Basel-Stuttgart (1978).

    Google Scholar 

  129. D. A. Higgs, “Maps of geometries,” J.London Math.Soc., 41, No. 4, 612–618 (1966).

    Google Scholar 

  130. D. A. Higgs, “Strong maps of geometries,” J.Comb.Theory, 5, No. 2, 185–191 (1968).

    Google Scholar 

  131. A. W. Ingleton, “Transversal matroids and related structures,” in: Higher Combinatorics, Dordrecht-Boston (1977), pp. 117–131.

  132. A. W. Ingleton and M. J. Pi., “Gammoids and transversal matroids,” J.Comb.Theory, B15, No. 1, 51–68 (1973).

    Google Scholar 

  133. M. Iri, “Survey of recent trends in applications of matroids,” Proc.IEEE ISCAS, Tokyo, 987 (1979).

  134. M. Iri, “A review of recent work in Japan on principal partitions of matroids and their applications,” Ann.Acad.Sci. (USA), 319, 306–319 (1979).

    Google Scholar 

  135. M. Iri, “Applications of matroid theory,” Math.Progr.State Art.11th Int.Symp., Bonn, Aug.23–27 (1983), Berlin (1983), pp. 158–201.

  136. M. Iri, “Structural theory for the combinatorial systems characterized by submodular functions,” in: Progress in Combinatorial Optimization, Academic Press, New York (1984), pp. 197–219.

    Google Scholar 

  137. M. Iri and S. Fujishige, “Use of matroid theory in operation research, circuits and systems theory,” Int.J.Syst.Sci., 12, No. 1, 27–54 (1981).

    Google Scholar 

  138. M. Iri and N. Tomizawa, “A unifying approach to fundamental problems in network theory by means of matroids,” Trans.Inst.Electron.Commun.Eng.Jpn., A58, No. 1, 33–40 (1975).

    Google Scholar 

  139. M. Iri and N. Tomizawa, “An algorithm for finding an optimal independent assigment,” J.Oper.Res.Soc.Jpn., 19, 32–57 (1976).

    Google Scholar 

  140. F. Jaeger, “On Tutte polynomials of matroids representable over GF(q),” Eur.J.Comb., 10, No. 3, 247–255 (1989).

    Google Scholar 

  141. F. Jaeger, “Tutte polynomials and bicycle dimension of ternary matroids,” Proc.Amer.Math.Soc., 107, No. 1, 17–25 (1989).

    Google Scholar 

  142. U. Jamshy and M. Tarsi, “Cycle covering of binary matroids,” J.Comb.Theory, B46, No. 2, 154–161 (1989).

    Google Scholar 

  143. J. Kahn, “Characteristic sets of matroids,” J.London Math.Soc., 26, No. 2, 207–217 (1982).

    Google Scholar 

  144. A. Kaufmann, Introduction a la Theorie des Sousensembles Flous, Masson, Paris-New York (1977).

    Google Scholar 

  145. D. G. Kelly and D. Kennedy, “The Higg's factorization of a geometric strong map,” Discr.Math., 22, No. 2, 139–142 (1978).

    Google Scholar 

  146. A. K. Kel'mans, “Concept of a vertex in a matroid and 3–connected graphs,” J.Graph.Theory, 4, No. 1, 13–19 (1980).

    Google Scholar 

  147. V. Klee, “The greedy algorithm for finitary and cofinitary matroids,” Proc.Symp.Pure Math., 19, 137–152 (1971).

    Google Scholar 

  148. B. Korte and D. Hausmann, “An analysis of the greedy heuristic for independence systems,” Ann.Discr.Math., 2, 65–74 (1978).

    Google Scholar 

  149. B. Korte and L. Lovasz, “Greedoids-A structural framework for the greedy algorithm,” in: Progress in Combinatorial Optimization, Academic Press, New York (1984) pp. 221–243.

    Google Scholar 

  150. J. P. S. Kung, A Source Book in Matroid Theory, Birkhäuser, Boston (1986).

    Google Scholar 

  151. J. P. S. Kung, “Basis-exchange properties,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 62–75.

  152. J. P. S. Kung, “Strong maps,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 224–253.

  153. J. P. S. Kung, “Extremal matroid theory,” Graph Struct.Theory: Proc.AMS-IMS-SIAM Jt.Summer Res.Conf.Graph Minors, Seattle, Wash., June 22–July 5, 1991, Providence (R.I.) (1993), pp. 21–61.

  154. J. P. S. Kung and Nguyen Hien Quang, “Weak maps,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 254–271.

  155. M. Las Vergnas, “Matroides orientables,” C.R.Acad.Sci., A280, No. 3, 61–64 (1975).

    Google Scholar 

  156. M. Las Vergnas, “Cyclic and totally cyclic orientations of combinatorial geometries,” Discr.Math., 20, No. 1, 51–61 (1977).

    Google Scholar 

  157. M. Las Vergnas, “Bases in oriented matroids,” J.Comb.Theory, B25, No. 3, 283–289 (1978).

    Google Scholar 

  158. M. Las Vergnas, “Fundamental circuits and a characterization of binary matroids,” Discr.Math., 31, No. 3, 327 (1980).

    Google Scholar 

  159. E. L. Lawler, “Matroid intersection algorithms,” Math.Progr., 9, No. 1, 31–56 (1975).

    Google Scholar 

  160. E. L. Lawler, Combinatorial Optimization: Network and Matroid, Winston, New York (1976).

    Google Scholar 

  161. T. Lazarson, “The representation problem for independence functions,” J.London.Math.Soc., 33, No. 1, 21–25 (1958).

    Google Scholar 

  162. B. Lindström, Lectures on Matroids, Stockholm Univ., 7, 1–43 (1974).

  163. B. Lindström, “On algebraic representations of matroids,” Repts.Dep.Math.Univ.Stockholm, No. 9, 1–25 (1984).

  164. B. Lindström, “On the algebraic characteristic set for a class of matroids,” Proc.Amer.Math.Soc., 95, No. 1, pp. 147–151 (1985).

    Google Scholar 

  165. B. Lindström, “Matroids, algebraic and nonalgebraic,” Repts.Dep.Math.Univ.Stockholm, No. 10, 1–11 (1986).

  166. B. Lindström, “The non-Pappus matroid is algebraic over any finite field,” Util.Math., 30, 53–55 (1986).

    Google Scholar 

  167. B. Lindström, “A reduction of algebraic representations of matroids,” Proc.Amer.Math.Soc., 100, No. 2, 338–389 (1987).

    Google Scholar 

  168. L. Lovasz, “Flats in matroids and geometric graphs,” in: Combinatorial Surveys: Proc.of the Sixth British Comb.Conf., Academic Press, London (1977), pp. 45–86.

    Google Scholar 

  169. L. Lovasz, Combinatorial Problems and Exercises, Akad. Kiado, Budapest (1979).

    Google Scholar 

  170. L. Lovasz, “Matroid matching and some applications,” J.Comb.Theory, B28, No. 2, 208–236 (1980).

    Google Scholar 

  171. L. Lovasz and M. Plummer, Matching Theory, Akad. Kiado, Budapest (1986).

    Google Scholar 

  172. L. Lovasz and A. Recski, “On the sum of matroids,” Acta Math.Acad.Sci.Hung., 24, Nos. 3–4, 329–333 (1973).

    Google Scholar 

  173. D. Lucas, “Properties of rank-preserving weak maps,” Bull.Amer.Math.Soc., 80, No. 1, 127–131 (1974).

    Google Scholar 

  174. D. Lucas, “Weak maps of combinatorial geometries,” Trans.Amer.Math.Soc., 206, 247–279 (1975).

    Google Scholar 

  175. A. Mandel, “Topology of oriented matroids,” Ph.D.Thesis, Dept. of Combinatorics and Optimization, Univ. Waterloo (1982). 126

  176. J. H. Mason, “Matroids as the study of geometrical configurations,” in: Higher Combinatorics, Dordrecht-Boston, (1977), pp. 133–176.

  177. N. White (Ed.), Matroid Applications, Cambridge Univ. Press (1992).

  178. W. Mayeda, Graph Theory, Wiley, Chichester (1972).

    Google Scholar 

  179. C. J. H. McDiarmid, “Rado's theorem for polymatroids,” Math.Proc.Cambridge Phil.Soc., 78, No. 2, 263–281 (1975).

    Google Scholar 

  180. L. Mirsky, Transversal Theory.An Account of Some Aspects of Combinatorial Mathematics, Academic Press, New York (1971).

    Google Scholar 

  181. K. Murota, System Analysis by Graphs and Matroids: Structural Solvability and Controllability, Springer, Berlin (1987).

    Google Scholar 

  182. M. Nakamura, “Boolean sublattices connected with minimization problem on matroids,” Math.Progr., 22, No. 1, 117–120 (1982).

    Google Scholar 

  183. M. Nakamura and M. Iri, “Fine structures of matroid intersections and their applications,” Int.Symp.Circuits and Syst.Proc., Tokyo, (1979), New York (1979), pp. 996–999.

  184. M. Nakamura and M. Iri, “A structural thery for submodular functions, polymatroids and polymatroid intersections,” Research Memorandum RMI 81–06, Univ. Tokyo (1981), pp. 1–70.

  185. H. Narayanan, “Theory of matroids and network analysis,” Ph.D.Thesis, Indian Inst. of Technology, Bombay (1974).

  186. H. Narayanan, “The principal lattice of partitions of a submodular function,” Linear Algebra Appl., 144, 179–216 (1991).

    Google Scholar 

  187. H. Narayanan and M. N. Vartak, “Gammoids, base-orderable matroids and series-parallel graphs,” Preprint (1973).

  188. H. Narayanan and M. N. Vartak, “On molecular and atomic matroids,” Lect.Notes.Math., 885, 358–364 (1981).

    Google Scholar 

  189. C. St. J. A. Nash-Williams, “An application of matroids to graph theory,” in: Theorie Graphes.Journees Internat.Etudes, Rome, 1966, Dunod, Paris (1967), pp. 263–265.

    Google Scholar 

  190. Nguyen Hien Quang, “Weak maps of combinatorial geometries,” Trans.Amer.Math.Soc., 206, 247–279 (1975).

    Google Scholar 

  191. Nguyen Hien Quang, “Functors of the category of combinatorial geometries and strong maps,” Discr.Math., 20, No. 2, 143–158 (1977).

    Google Scholar 

  192. Nguyen Hien Quang, “Semimodular functions and combinatorial geometries,” Trans.Amer.Math.Soc., 238, 355–383 (1978).

    Google Scholar 

  193. Nguyen Hien Quang, “Projections and weak maps in combinatorial geometries,” Discr.Math., 24, No. 3, 281–289 (1978).

    Google Scholar 

  194. Nguyen Hien Quang, “Constructing the free erection of a geometry,” J.Comb.Theory, B27, No. 2, 216–224 (1979).

    Google Scholar 

  195. Nguyen Hien Quang, “Weak cuts of combinatorial geometries,” Trans.Amer.Math.Soc., 250, 247–262 (1979).

    Google Scholar 

  196. Nguyen Hien Quang, “Semimodular functions,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 272–297.

  197. G. Nicoletti, “Generating cryptomorphic axiomatizations of matroids,” Lect.Notes Math., 792, 110–113 (1980).

    Google Scholar 

  198. G. Nicoletti and N. L. White, “Axiom systems,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 29–44.

  199. J. G. Oxley, “On the intersections of circuits and cocircuits in matroids,” Combinatorica, 4, Nos. 2–3, 187–195 (1984).

    Google Scholar 

  200. J. G. Oxley, “On the matroids representable over GF(4),” J.Comb.Theory, B41, No. 2, 250–252 (1986).

    Google Scholar 

  201. J. G. Oxley, “Graphs and series-parallel networks,” in: Theory of Matroids, Cambridge Univ. Press (1986), pp. 97–126.

  202. J. G. Oxley, “A characterization of the ternary matroids with no M(K 4)-minor,” J.Comb.Theory, B42, No. 2, 212–249 (1987).

    Google Scholar 

  203. J. G. Oxley, “On nonbinary 3–connected matroids,” Trans.Amer.Math.Soc., 300, No. 2, 663–679 (1987).

    Google Scholar 

  204. J. G. Oxley, “A characterization of certain excluded-minor classes of matroids,” Eur.J.Comb., 10, No. 3, 275–279 (1989).

    Google Scholar 

  205. J. G. Oxley, “The regular matroids with no 5–wheel minor,” J.Comb.Theory, B46, No. 3, 292–305 (1989).

    Google Scholar 

  206. J. G. Oxley, “On an excluded-minor class of matroids,” Discr.Math., 82, No. 1, 35–52 (1991).

    Google Scholar 

  207. J. G. Oxley, “A characterization of a class of nonbinary matroids,” J.Comb.Theory, B49, No. 2, 181–189 (1991).

    Google Scholar 

  208. J. G. Oxley, “Ternary paving matroids,” Discr.Math., 91, No. 1, 77–86 (1991).

    Google Scholar 

  209. J. G. Oxley, “Infinite matroids,” in: Matroid Appl., Cambridge Univ. Press (1992), pp. 73–90.

  210. J. G. Oxley and D. Row, “On fixing elements in matroid minors,” Combinatorica, 9, No. 1, 69–74 (1989).

    Google Scholar 

  211. J. G. Oxley and G. Whittle, “Connectivity of submodular functions,” Discr.Math., 105, Nos. 1–3, 173–184 (1992).

    Google Scholar 

  212. R. Rado, “A theorem on independence relations,” Quart.J.Math.Oxford, 13, 83–89 (1942).

    Google Scholar 

  213. R. Rado, “A note on independence functions,” Proc.London Math.Soc., 7, No. 26, 300–320 (1957).

    Google Scholar 

  214. R. Rado, “Abstract linear dependence,” Colloq.Math., 14, 258–264 (1966).

    Google Scholar 

  215. R. Von Randow, “Introduction to the theory of matroids,” Lect.Notes Econ.Math.Syst., 109, 1–110 (1975).

    Google Scholar 

  216. A. Recski, Matroid Theory and Its Applications in Electric Network Theory and in Statics, Akad. Kiado, Budapest (1989).

    Google Scholar 

  217. A. Recski, “Some open problems in matroid theory,” in: Comb.Math.: Proc.3rd Int.Conf., New York (1985), New York (1989), pp. 332–334.

  218. A. Recski, “Applications of combinatorics to statics,” Discr.Math., 108, Nos. 1–3, 183–188 (1992).

    Google Scholar 

  219. A. Recski and M. Iri, “Network theory and transversal matroids,” Dicsr.Appl.Math., 2, 311–326 (1980).

    Google Scholar 

  220. T. J. Reid, “Triangles in 3–connected matroids,” Discr.Math., 90, No. 3, 281–296 (1991).

    Google Scholar 

  221. I. Rival and M. Stanford, “Algebraic aspects of partition lattices,” in: Matroid Applications, Cambridge Univ. Press (1992), pp. 106–122.

  222. A. Schrijver, “Matroids and linking systems,” J.Comb.Theory, B26, No. 3, 349–369 (1979).

    Google Scholar 

  223. S. Seshu and M. B. Reed, Linear Graphs and Electrical Networks, Addison Wesley, London (1961).

    Google Scholar 

  224. P. D. Seymour, “The forbidden minors of binary clutters,” J.London Math.Soc., 12, No. 3, 356–360 (1976).

    Google Scholar 

  225. P. D. Seymour, “The matroids with the max flow min-cut property,” J.Comb.Theory, B23, Nos. 2–3, 189–222 (1977).

    Google Scholar 

  226. P. D. Seymour, “Matroid representation over GF(3),” J.Comb.Theory, B26, No. 2, 159–173 (1979).

    Google Scholar 

  227. P. D. Seymour, “Decomposition of regular matroids,” J.Comb.Theory, B28, No. 3, 305–359 (1980).

    Google Scholar 

  228. P. D. Seymour, “On Tutte's characterization of graphic matroids,” Ann.Dicsr.Math., 8, 83–90 (1980).

    Google Scholar 

  229. P. D. Seymour, “Recognizing graphic matroids,” Combinatorica, 1, No. 1, 75–78 (1981).

    Google Scholar 

  230. P. D. Seymour and P. N. Walton, “Detecting matroid minors,” J.London Math.Soc., 23, No. 2, 193–203 (1981).

    Google Scholar 

  231. S. Shinoda, H. Sakuma, and T. Yasuda, “Semimatroids,” in: Int.Symp.Circuits and Syst.Proc., Tokyo, (1979), New York (1979), pp. 1004–1007.

  232. J. M. S. Simoes-Pereira, “Matroidal families of graphs,” in: Matroid Applications, Cambridge Univ. Press (1992), pp. 91–105.

  233. M. N. S. Swamy and K. Thulasiraman, Graphs, Networks, and Algorithms, Wiley, New York (1981).

    Google Scholar 

  234. E. Tardos, “An intersection theorem for supermatroids,” J.Comb.Theory, B50, No. 2, 150–159 (1991).

    Google Scholar 

  235. N. White (Ed.), Theory of Matroids, Cambridge Univ. Press (1986).

  236. K. Truemper, “A decomposition theory for matroids. 1. General results,” J.Comb.Theory, B39, No. 1, 43–76 (1985).

    Google Scholar 

  237. K. Truemper, “A decomposition theory for matroids. 2. Minimal violation matroids,” J.Comb.Theory, B39, No. 3, 282–297 (1985).

    Google Scholar 

  238. K. Truemper, “A decomposition theory for matroids. 3. Decomposition conditions,” J.Comb.Theory, B41, No. 3, 275–305 (1986).

    Google Scholar 

  239. K. Truemper, “A decomposition theory for matroids. 4. Decomposition of graphs,” J.Comb.Theory, B45, No. 3, 259–292 (1988).

    Google Scholar 

  240. K. Truemper, “A decomposition theory for matroids. 5. Testing of matrix total unimodularity,” J.Comb.Theory, B49, No. 2, 241–281 (1991).

    Google Scholar 

  241. K. Truemper, “A decomposition theory for matroids. 6. Almost regular matroids,” J.Comb.Theory, B55, No. 2, 253–301 (1995).

    Google Scholar 

  242. K. Truemper, “A decomposition theory for matroids. 7. Analysis of minimal violation matrices,” J.Comb.Theory, B55, No. 2, 302–335 (1992).

    Google Scholar 

  243. W. T. Tutte, “A homotopy theorem for matroids. I, II,” Trans.Amer.Math.Soc., 88, No. 1, 144–174 (1958).

    Google Scholar 

  244. W. T. Tutte, “Matroids and graphs,” Trans.Amer.Math.Soc., 90, No. 3, 527–552 (1959).

    Google Scholar 

  245. W. T. Tutte, “Lectures on matroids,” J.Res.Nat.Bur.Standards, B69, 1–47 (1965).

    Google Scholar 

  246. W. T. Tutte, Introduction to the Theory of Matroids, Amer. Elsevier, New York (1971).

    Google Scholar 

  247. P. Wang, Fuzzy Sets Theory and Applications, Guang Zhou Univ., Guang Zhou (1985).

    Google Scholar 

  248. D. J. A. Welsh, “Euler and bipartite matroids,” J.Comb.Theory, 6, No. 4, 375–377 (1969).

    Google Scholar 

  249. D. J. A. Welsh, “On the hyperplanes of a matroid,” Proc.Cambridge Phil.Soc., 65, No. 1, 11–18 (1969).

    Google Scholar 

  250. D. J. A. Welsh, Matroid Theory, Academic Press, London (1976).

    Google Scholar 

  251. D. J. A. Welsh, “Colourings, flows, and projective geometry,” Nieuw Arch.Wisk., 28, No. 2, 159–176 (1980).

    Google Scholar 

  252. N. L. White, “The transendence degree of coordinatization of a combinatorial geometry,” J.Comb.Theory, B29, No. 2, 168–175 (1980).

    Google Scholar 

  253. N. L. White, “Coordinatizations,” in: Combinatorial Geometries, Cambridge Univ. Press (1987), pp. 1–27.

  254. N. L. White, “Unimodular matroids,” in: Combinatorial Geometries, Cambridge Univ. Press (1987), pp. 40–52.

  255. W. Whiteley, “Matroid and rigid structures,” in: Matroid Applications, Cambridge Univ. Press (1992), pp. 1–53.

  256. H. Whitney, “On the abstract properties of linear dependence,” Amer.J.Math., 57, 509–533 (1935).

    Google Scholar 

  257. G. P. Whittle, “On the critical exponent of transversal matroids,” J.Comb.Theory, B37, No. 1, 94–95 (1984).

    Google Scholar 

  258. G. P. Whittle, “Some aspects of the critical problem for matroids,” Bull.Austral.Math.Soc., 35, No. 1, 153–154 (1987).

    Google Scholar 

  259. G. P. Whittle, “Dowling group geometries and the critical problem,” J.Comb.Theory, B47, No. 1, 80–92 (1989).

    Google Scholar 

  260. G. P. Whittle, “q-Lifts of tangential k-blocks,” J.London Math.Soc., 39, No. 1, 9–15 (1989).

    Google Scholar 

  261. G. P. Whittle, “A generalization of the matroid lift construction,” Trans.Amer.Math.Soc., 316, No. 1, 141–159 (1989).

    Google Scholar 

  262. R. J. Wilson, Introduction to Graph Theory, Oliver and Boyd, Edinburgh (1972).

    Google Scholar 

  263. R. J. Wilson, “The Möbius function in combinatorial mathematics,” Comb.Math.Appl., Academic Press, London-New York (1971), pp. 315–333.

    Google Scholar 

  264. T. Zaslavsky, “The Möbius function and the characteristic polynomial,” in: Combinatorial Geometries, Cambridge Univ. Press (1987), pp. 114–138.

  265. T. Zaslavsky, “Strong Tutte functions of matroids and graphs,” Trans.Amer.Math.Soc., 334, No. 1, 317–347 (1992).

    Google Scholar 

  266. G. M. Ziegler, “Matroid representations and free arrangements,” Trans.Amer.Math.Soc., 320, No. 2, 525–541 (1991).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revyakin, A.M. Matroids. Journal of Mathematical Sciences 108, 71–130 (2002). https://doi.org/10.1023/A:1012757316376

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012757316376

Navigation