, Volume 461, Issue 1–3, pp 37–40 | Cite as

The symbiotic role of marine microbes on living surfaces

  • Evelyn Armstrong
  • Liming Yan
  • Kenneth G. Boyd
  • Phillip C. Wright
  • J. Grant Burgess


Every surface immersed in the sea rapidly becomes covered with a biofilm. On inanimate surfaces, this is often followed by colonisation by larger organisms, and general macrofouling. On the other hand, the majority of marine organisms remain relatively free from macrofouling, although some may be covered in a thin film of epibiotic bacteria. The role of these bacteria in maintaining the health of the host has received little attention. Here we describe an ecological role for epibiotic bacteria from seaweed surfaces. These epibionts may play a protective role, releasing compounds into the surrounding seawater that help prevent extensive fouling of the surface. These compounds may also have industrial and medical applications. The relative ease of culturing these microbes, compared to other bacteria that produce active compounds suggests seaweed-associated bacteria may be useful in bioprocess applications, such as the production of antimicrobial or antifouling compounds.

biofilms cell communication macroalgae marine bacteria symbiosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, E., J. D. McKenzie & G. T. Goldsworthy, 1999. Aquaculture of sponges on scallops for natural products research and antifouling. J. Biotechnol. 70: 163–174.Google Scholar
  2. Boyd, K. G., D. R. Adams & J. G. Burgess, 1999a. Antibacterial and repellent activity of marine bacteria associated with algal surfaces. Biofouling 14: 227–236Google Scholar
  3. Boyd, K. G., A. Mearns-Spragg & J. G. Burgess, 1999b. Screening of Marine Bacteria for the Production of Microbial Repellents Using a Spectrophotometric Chemotaxis Assay. Mar. Biotechnol. 1: 359–363.Google Scholar
  4. Boyd, K. G., A. Mearns-Spragg, G. Brindley, K. Hatzidimitriou, A. Rennie, M. Bregu, M. O. Hubble & J. G. Burgess, 1998. Antifouling potential of epiphytic marine bacteria from the surfaces of marine algae. In Le Gal, Y. & A. Muller-Feuga (eds), Marine Micro-organisms for Industry. EDITIONS IFREMER, Plouzané, France: 128–136.Google Scholar
  5. Bewley, C. A., N. D. Holland & D. J. Faulkner, 1996. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52: 716–722.Google Scholar
  6. Burgess, J. G., E. M. Jordan, M. Bregu, A. Mearns-Spragg & K. G. Boyd, 1999. Microbial antagonism: a neglected avenue of natural products research. J. Biotechnol. 70: 27–32.Google Scholar
  7. Clare, A. S., 1996. Marine natural product antifoulants: status and potential. Biofouling 9: 211–229.Google Scholar
  8. Davies, D. G., A. M. Chakrabarty & G. G. Geesey, 1993. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Apl. envir. Microbiol. 59: 1181–1186.Google Scholar
  9. Filion-Myklebust, C. & T. A. Norton, 1981. Epidermis shedding on the brown seaweed Ascophyllum nodosum (L.) Le Jolis, and its ecological significance. Mar. Biol. Lett. 2: 45–51.Google Scholar
  10. Gil-Turness, M. S. & W. Fenical, 1992 Embryos of Homarus americanus are protected by epibiotic bacteria. Biol. Bull. 182: 105–108.Google Scholar
  11. Holmstrom, C., D. Rittschof & S. Kjelleberg, 1992. Inhibition of Settlement by Larvae of Balanus amphitrite and Ciona intestinalis by a Surface-Colonizing Marine Bacterium. Apl. envir. Microbiol. 58: 2111–2115.Google Scholar
  12. Hoyle, B. D., L. J. Williams & J. W. Costerton, 1993. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms. Infect. Immun. 61: 777–780.Google Scholar
  13. Laycock, R. A., 1974. The detrital food chain based on seaweeds. 1. Bacteria associated with the surface of Laminaria fronds. Mar. Biol. 25: 223–231.Google Scholar
  14. Lemos, M. L., A. E. Toranzo & J. L. Barja, 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbiol. Ecol. 11: 149–163.Google Scholar
  15. Mann, K. H., 1973. Seaweeds: their productivity and strategy for growth. Science 182: 975–981.Google Scholar
  16. Mearns-Spragg, A., K. G. Boyd, M. O. Hubble & J. G. Burgess, 1997. Antibiotics from surface associated marine bacteria. Proceedings of the Fourth Underwater Science Symposium. The Society for Underwater Technology, London: 147–157.Google Scholar
  17. Mearns-Spragg A., M. Bregu, K. G. Boyd & J. G. Burgess, 1998. Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates after exposure to terrestrial bacteria. Lett. Apl. Microbiol. 27: 142–146.Google Scholar
  18. Moss, B. L., 1982. The control of epiphytes by Halidrys siliquosa (L.) Lynbg. (Phaeophyta, Cystoseiraceae). Phycologia 21: 185–191.Google Scholar
  19. Ott, J. A., 1980. Growth and production in Posidonia oceanica (L.) Delile. P.S.Z.N.I. Mar. Ecol. 1: 47–64.Google Scholar
  20. Patterson, G. L. & C. M. Bolis, 1997. Fungal cell-wall polysaccharides elicit an antifungal secondary metabolite (phytoalexin) in the cyanobacterium Scytonema ocellatum. J. Phycol. 33: 54–60.Google Scholar
  21. Prieur, D., F. Gaill & S. Corre, 1993. Complex Epibiotic Bacterial Communities on Marine Organisms: Fouling or Interactions? In Guerrero, R. & C. Pedrós-Alió (eds), Trends in Microbial Ecology. Spanish Society for Microbiology, Barcelona: 207–212.Google Scholar
  22. Salmond, G. P. C., B. W. Bycroft, G. S. A. B. Stewart & P. Williams, 1995. The bacterial ‘enigma’: cracking the code of cell—cell communication. Mol. Microbiol. 16: 615–625.Google Scholar
  23. Sieburth, J. M., 1969. Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J. exp. mar. Biol. Ecol. 3: 290–309.Google Scholar
  24. Sieburth, J. M. & J. L. Tootle, 1981. Seasonality of microbial fouling on Ascophyllum nodosum (L.) Lejol, Fucus vesiculosus L., Polysiphonia lanosa (L.) Tandy and Chondrus crispus Stackh. J. Phycol. 17: 57–64.Google Scholar
  25. Tatewaki, M., L. Provasoli & I. J. Pinter, 1983. Morphogenesis of Monostroma oxysperma (Kutz.) Doty (Chlorophyceae) in axenic culture, especially in bialgal culture. J. Phycol. 19: 404–416.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Evelyn Armstrong
    • 1
  • Liming Yan
    • 1
  • Kenneth G. Boyd
    • 1
  • Phillip C. Wright
    • 2
  • J. Grant Burgess
    • 3
  1. 1.Department of Biological SciencesHeriot-Watt University, RiccartonEdinburghU.K
  2. 2.Department of Mechanical and Chemical EngineeringHeriot-Watt University, RiccartonEdinburghU.K.
  3. 3.Department of Biological SciencesHeriot-Watt University, RiccartonEdinburghU.K.

Personalised recommendations