Advertisement

Journal of Applied Electrochemistry

, Volume 31, Issue 11, pp 1185–1193 | Cite as

Electrochemical reduction of nitrate in weakly alkaline solutions

  • K. Bouzek
  • M. Paidar
  • A. Sadílková
  • H. Bergmann
Article

Abstract

The electrocatalytic activity of several materials for the nitrate reduction reaction was studied by cyclic voltammetry on a rotating ring disc electrode in solutions with different concentrations of sodium bicarbonate. Copper exhibited highest catalytic activity among the materials studied. Nitrate reduction on copper was characterized by two cathodic shoulders on the polarization curve in the potential region of the commencement of hydrogen evolution. In this potential range an anodic current response was observed on the Pt ring electrode identified as nitrite to nitrate oxidation. This indicates that nitrite is an intermediate product during nitrate reduction. These conclusions were verified by batch electrolysis using a plate electrode electrochemical cell. Copper and nickel, materials representing the opposite ends of the electrocatalytic activity spectra, were used in batch electrolysis testing.

cyclic voltammetry electrocatalytic activity nitrate reduction rotating ring disc electrode weakly alkaline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Council Directive 98/83/EC, 'On the Quality of Water Intended for Human Consumption' (3 Nov. 1998).Google Scholar
  2. 2.
    O.A. Petrii and T.Y. Safonova, J. Electroanal. Chem. 331 (1992) 897.Google Scholar
  3. 3.
    S. Ureta-Zanartu and C. Yanez, Electrochim. Acta 42 (1997) 1725.Google Scholar
  4. 4.
    J.F.E. Gootzen, P.G.J.M. Peeters, J.M.B. Dukers, L. Lefferts, W. Visscher and J.A.R. Veen, J. Electroanal. Chem. 434 (1997) 171.Google Scholar
  5. 5.
    T. Ohmori, M.S. El-Deab and M. Osawa, J. Electroanal. Chem. 470 (1999) 46.Google Scholar
  6. 6.
    J.D. Genders, D. Hartsough and D.T. Hobbs, J. Appl. Electrochem. 26 (1996) 1.Google Scholar
  7. 7.
    J.O'M. Bockris and J. Kim, J. Appl. Electrochem. 27 (1997) 623.Google Scholar
  8. 8.
    J.O'M. Bockris and J. Kim, J. Electrochem. Soc. 143 (1996) 3801.Google Scholar
  9. 9.
    H.-L. Li, D.H. Robertson, J.Q. Chambers and D.T. Hobbs, J. Electrochem. Soc. 135 (1988) 1154.Google Scholar
  10. 10.
    L. Ma, H.-L. Li and C.-L. Cai, Electrochim. Acta 38 (1993) 2773.Google Scholar
  11. 11.
    S. Cattarin, J. Appl. Electrochem. 22 (1992) 1077.Google Scholar
  12. 12.
    N. Chebotareva and T. Nyokong, J. Appl. Electrochem. 27 (1997) 975.Google Scholar
  13. 13.
    M. Paidar, I. Roušar and K. Bouzek, J. Appl. Electrochem. 29 (1999) 611.Google Scholar
  14. 14.
    M. Malát, 'Inorganic Absorption Photometry' (Academia, Prague, 1973) (in Czech).Google Scholar
  15. 15.
    I. Roušar, J. Hostomský, V. Cezner and B. Štverák, J. Electrochem. Soc. 118 (1971) 881.Google Scholar
  16. 16.
    P. Pitter, 'Hydrochemie' (SNTL, Prague, 1998) (in Czech).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • K. Bouzek
    • 1
  • M. Paidar
    • 1
  • A. Sadílková
    • 1
  • H. Bergmann
    • 1
    • 2
  1. 1.Department of Inorganic TechnologyInstitute of Chemical TechnologyPrague 6Czech Republic
  2. 2.Anhalt University of Applied SciencesKöthenGermany

Personalised recommendations