Skip to main content
Log in

Ammonia Decomposition on Ir(100): From Ultrahigh Vacuum to Elevated Pressures

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ammonia decomposition on Ir(100) has been studied over the pressure range from ultrahigh vacuum to 1.5 Torr and at temperatures ranging from 200 to 800 K. The kinetics of the ammonia decomposition reaction was monitored by total pressure change. The apparent activation energy obtained in this study (84 kJ/mol) is in excellent agreement with our previous studies using supported Ir catalysts (Ir/Al2O3 82 kJ/mol). Partial pressure dependence studies of the reaction rate yielded a positive order (0.9±0.1) with respect to ammonia and negative order (−0.7 ±0.1) with respect to hydrogen. Temperature-programmed desorption data from clean and hydrogen co-adsorbed Ir(100) surfaces indicate that ammonia undergoes facile decomposition on both these surfaces. Recombinative desorption of N2 is the rate-determining step with a desorption activation energy of ∼63 kJ/mol. Co-adsorption data also indicate that the observed negative order with respect to hydrogen pressure is due to enhancement of the reverse reaction (NH x + H → NH x+1, x=0–2) in the presence of excess H atoms on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Rostrup-Nielsen, in: Catalytic Steam Reforming, Science and Engineering, Vol. 5, eds. J.R. Anderson and M. Boudart Springer, Berlin, (1984).

    Google Scholar 

  2. J.N. Armor, Appl. Catal. 176 (1999) 159.

    Google Scholar 

  3. T.V. Choudhary and D.W. Goodman, Catal. Lett. 59 (1999) 93.

    Google Scholar 

  4. T.V. Choudhary and D.W. Goodman, J. Catal. 192 (2000) 316.

    Google Scholar 

  5. T.V. Choudhary, C. Sivadinarayana, C. Chusuei, A. Klinghoffer and D.W. Goodman, J. Catal. 199 (2001) 9.

    Google Scholar 

  6. T.V. Choudhary, C. Sivadinarayana, A. Klinghoffer and D.W. Goodman, Stud. Surf. Sci. Catal., in press.

  7. R. Metkemeijer and P. Achard, Int. J. Hydrogen Energy 19 (1994) 535; J. Power Sources 49 (1994) 271.

    Google Scholar 

  8. R. Metkemeijer and P. Achard, J. Power Sources 49 (1994) 271.

    Google Scholar 

  9. M. Asscher and Z. Rosenzweig, Surf. Sci. 225 (1990) 249.

    Google Scholar 

  10. Y.K. Sun, Y. Q. Wang, C.B. Mullin and W.H. Weinberg, Langmuir 7 (1991) 1689; W. Tsai and W. H. Weinberg, J. Phys. Chem. 91 (1987) 5302; C. Egawa, T. Nishida, S. Naito and K. Tamaru, J. Chem. Soc. Faraday Trans. 80 (1984) 1595; J.M. Bradeley, A. Hopkinson and D.A. King, Surf. Sci. 371 (1997) 255.

    Google Scholar 

  11. W. Tsai, J.J. Vajo and W.H. Weinberg, J. Phys. Chem. 89 (1985) 4926; J.J. Vajo,W. Tsai andW.H.Weinberg, J. Phys. Chem. 90 (1986) 6531; 89 (1985) 3243; D.G. Loffler and L.D. Schmidt, Surf. Sci. 59 (1976) 195.

    Google Scholar 

  12. C. Egawa, S. Naito and K. Tamaru, Surf. Sci. 131 (1983) 49; M. Grossman and D.G. Loffler, J. Catal. 80 (1983) 188; A.P.C. Reed and R.M. Lambert, J. Phys. Chem. 88 (1983) 1955.

    Google Scholar 

  13. I.C. Bassignana, K. Wagemann, J. Kuppers and G. Ertl, Surf. Sci. 175 (1986) 22; M. Huttinger and J. Kuppers, Surf. Sci. 130 (1983) L277; D. Chrysostomou, J. Flowers and F. Zaera, Surf. Sci. 439 (1999) 34.

    Google Scholar 

  14. G. Papapolymerou and V. Bontozoglou, J. Mol. Catal. A 120 (1997) 165.

    Google Scholar 

  15. R.W. McCabe, J. Catal. 79 (1983) 445.

    Google Scholar 

  16. E. Schmidt, Hydrazine and its Derivatives, Preparation, Properties, Applications (Wiley, New York, 1984).

    Google Scholar 

  17. T.V. Choudhary and D.W. Goodman, J. Mol. Catal. 163 (2000) 9.

    Google Scholar 

  18. C. Xu, W.S. Oh, D.Y. Kim and D.W. Goodman, J. Vac. Sci. Technol. A 15 (1997) 1261.

    Google Scholar 

  19. T.V. Choudhary, C. Sivadinarayana and D.W. Gooodman, Catal. Lett. 72 (2001) 197.

    Google Scholar 

  20. M. Grossman and D.G. Loffler, React. Kinet. Catal. Lett. 33 (1987) 87.

    Google Scholar 

  21. A.K. Santra, B.K. Min, C.-W. Yi, T.V. Choudhary and D.W. Goodman, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, T., Santra, A., Sivadinarayana, C. et al. Ammonia Decomposition on Ir(100): From Ultrahigh Vacuum to Elevated Pressures. Catalysis Letters 77, 1–5 (2001). https://doi.org/10.1023/A:1012754319273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012754319273

Navigation