Skip to main content
Log in

Immunohistochemical expression of the α5 integrin subunit in the normal adult rat central nervous system

  • Published:
Journal of Neurocytology

Abstract

We investigated the distribution of the α5 integrin subunit in the normal adult rat CNS using immunohistochemical methods. Results indicated that the α5 integrin subunit was expressed on the vast majority of neurons throughout the brain and spinal cord. In general, neurons showed diffuse cytoplasmic labelling, although many cortical neurons in layers 4 and 5 did show punctate labelling on the cell surface. In addition, axons within the white matter of the brainstem and caudal CNS areas were labelled, with the most intense labelling seen within the white matter of the spinal cord. In addition, labelling of astrocytes was seen throughout white matter, with particularly heavy astrocyte labelling in the spinal cord. The widespread distribution of the α5 subunit suggests a general function for the α5β1 integrin receptor (the only integrin receptor that includes the α5 subunit) in the adult CNS. The increased expression of fibronectin, the only known ligand for the α5β1 integrin receptor, known to occur around the site of a CNS lesion suggests a possible role for the α5β1 receptor in the response of neurons in the vicinity of a CNS injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archelos, J. J., Previtali, S. C. & Hartung, H. P. (1999) The role of integrins in immune-mediated diseases of the nervous system. Trends in Neuroscience 22, 30–38.

    Google Scholar 

  • Berton, G & Lowell, C. A. (1999) Integrin signalling in neutrophils and macrophages. Cell Signalling 11, 621–635.

    Google Scholar 

  • Cai, T., Lei, Q. Y., Wang, L. Y. & Zha, X. L. (2000) TGF-beta 1 modulated the expression of alpha 5 beta 1 integrin and integrin-mediated signalling in human hepatocarcinoma cells. Biochemical and Biophysical Research Communications 274, 519–525.

    Google Scholar 

  • Dalton, S. L., Scharf, E., Davey, G. & Assoian, R. K. (1999) Transforming growth factor beta overides the adhesion requirements for surface expression of alpha(5)beta(1) integrin in normal rat kidney fibroblasts. A necessary effect for induction of anchorage-independent growth. Journal of Biological Chemistry 274, 30139–30145.

    Google Scholar 

  • de Arcangelis, A. & Georges-Labouesse, E. (2000) Integrin and ECM functions: Roles in vertebrate development. Trends in Genetics 16, 389–395.

    Google Scholar 

  • Goh, K. L., Yang, J. T. & Hynes, R. O. (1997) Mesodermal defects and cranial neural crest apoptosis in alpha-5 integrin-null embryos. Development 124, 4309–4319.

    Google Scholar 

  • Grooms, S. Y., Terracio, L. & Jones, L. S. (1993) Anatomical localisation of β1 integrin-like immunoreactivity. Experimental Neurology 122, 253–259.

    Google Scholar 

  • Jacques, T. S., Relvas, J. B., Nishimura, S., Pytela, R., Edwards, G. M., Streuli, C. H. & Ffrench-Constant, C. (1998) Neural precursor cell chain migration and division are regulated through different beta 1 integrins. Development 125, 3167–3177.

    Google Scholar 

  • Jones, L. S. (1996) Integrins: Possible functions in the adult CNS. Trends in Neuroscience 19, 68–72.

    Google Scholar 

  • Jones, L. S. & Grooms, S. Y. (1995) Localisation of α5 integrin-like immunofluorescence in the adult rat hippocampus. Society for Neuroscience Abstracts 21, 1313.

    Google Scholar 

  • Jones, L. S. & Grooms, S. Y. (1997) Normal and aberrant functions of integrins in the adult central nervous system. Neurochemistry International 31, 587–595.

    Google Scholar 

  • Jones, J. L. & Walker, R. A. (1999) Integrins: A role as cell signalling molecules. Journal of Clinical Pathology: Molecular Pathology 52, 208–213.

    Google Scholar 

  • Kloss, C. U. A., Werner, A., Klein, M. A., Shen, J., Menuz, K., Probst, J. C., Kreutzberg, G. W. & Raivich, G. J. (1999) Integrin family of cell adhesion molecules in the injured brain: Regulation and cellular localisation in the normal and regenerating mouse facial motor nucleus. Journal of Comparative Neurology 411, 162–178.

    Google Scholar 

  • Logan, A., Berry, M., Gonzalez, A. M., Frautschy, S. A., Sporn, M. B. & Baird, A. (1994) Effects of transforming growth factor β1 on scar production in the injured central nervous system of the rat. European Journal of Neuroscience 6, 355–363.

    Google Scholar 

  • Logan, A., Green, J., Hunter., A., Jackson, R. & Berry, M. (1999) Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-β2. European Journal of Neuroscience 11, 2367–2374. SC at 6pt

    Google Scholar 

  • Mctigue, D. M., Popovich, P. G., Morgan, T. E. & Stokes, B. T. (2000) Localization of transforming growth factor-β1 and receptor mRNA after experimental spinal cord injury. Experimental Neurology 163, 220–230.

    Google Scholar 

  • Murase, S. & Hayashi, Y. (1998) Integrin α1 localisation in murine central and peripheral nervous system. Journal of Comparative Neurology 395, 161–176.

    Google Scholar 

  • Nishimura, S. L., Boylen, K. P., Enheber S., Milner, T. A., Ramos, D. M. & Pytela, R. (1998) Synaptical glial localisation of the integrin αVβ8 in mouse and rat brain. Brain Research 791, 271–282.

    Google Scholar 

  • Pasinetti, G. M., Nichols, N. R., Tocco, G., Morgan, T., Laping, N. & Finch, C. E. (1993) Transforming growth factor beta 1 and fibronectin messenger RNA in rat brain: Responses to injury and cell-type localisation. Neuroscience 54, 893–907.

    Google Scholar 

  • Pinkstaff, J. K., Detterich, J., Lynch, G. & Gall, C. (1999) Integrin subunit gene expression is regionally differentiated in adult brain. Journal of Neuroscience 19, 1541–1556.

    Google Scholar 

  • Pinkstaff, J. K., Lynch, G. & Gall, C. M. (1998) Localisation and seizure-regulation of integrin beta-1 mRNA in adult rat brain. Molecular Brain Research 55 265–276.

    Google Scholar 

  • Reichardt, L. F. & Tomaselli, K. J. (1991) Extracellular matrix molecules and their receptors: Functions in neural development. Annual Review of Neuroscience 14, 531–570.

    Google Scholar 

  • Venstrom, K. A. & Reichardt, L. F. (1993) Extracellular matrix 2: Role of extracellular matrix molecules and their receptors in the nervous system. FASEB Journal 7, 996–1003.

    Google Scholar 

  • Yanaka, K., Camarata, P. J., Spellman, S. R., Mc Carthy, J. B. & Furcht, L. T. (1996a) Neuronal protection from cerebral ischemia by synthetic fibronectin peptides to leukocyte adhesion molecules. Journal of Cerebral Blood Flow Metabolism 16, 1120–1125.

    Google Scholar 

  • Yanaka, K., Camarata, P. J., Spellman, S. R., Mc Carthy, J. B. & Furcht, L. T. (1996b) Synthetic fibronectin peptides and ischemic brain injury after transient middle cerebral artery occlusion in rats. Journal of Neurosurgery 85, 125–130.

    Google Scholar 

  • Yenari, M. A., Kunis, D., Sung., G., Onley., D., Watson., L., Turners, S., Withaker, S. & Steinberg, G. K. (1998) Hu23F2G, an antibody recognising the leukocyteCD11/CD18 integrin, reduces injury in a rabbit model of transient focal ischemia. Experimental Neurology 153, 223–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Von R. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, V.R., McBride, A. & Priestley, J.V. Immunohistochemical expression of the α5 integrin subunit in the normal adult rat central nervous system. J Neurocytol 30, 243–252 (2001). https://doi.org/10.1023/A:1012753808599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012753808599

Keywords

Navigation