Advertisement

Origins of life and evolution of the biosphere

, Volume 31, Issue 6, pp 527–547 | Cite as

Protection of Bacterial Spores in Space, a Contribution to the Discussion on Panspermia

  • Gerda HorneckEmail author
  • Petra Rettberg
  • Günther Reitz
  • Jörg Wehner
  • Ute Eschweiler
  • Karsten Strauch
  • Corinna Panitz
  • Verena Starke
  • Christa Baumstark-Khan
Article

Abstract

Spores of Bacillus subtilis were exposed to space in theBIOPAN facility of the European Space Agency onboard of the Russian Earth-orbiting FOTON satellite. The spores were exposed either in dry layers without any protecting agent, or mixed withclay, red sandstone, Martian analogue soil or meteorite powder,in dry layers as well as in so-called `artificial meteorites', i.e. cubes filled with clay and spores in naturally occurring concentrations. After about 2 weeks in space, their survival was tested from the number of colony formers. Unprotected spores in layers open to space or behind a quartz window were completely or nearly completely inactivated (survival rates in most cases≤10-6). The same low survival was obtained behind a thin layer of clay acting as an optical filter. The survival rate was increased by 5 orders of magnitude and more, if the spores in the dry layer were directly mixed with powder of clay,rock or meteorites, and up to 100% survival was reached in soilmixtures with spores comparable to the natural soil to spore ratio. These data confirm the deleterious effects of extraterrestrial solar UV radiation. Thin layers of clay, rock or meteorite are only successful in UV-shielding, if they are indirect contact with the spores. The data suggest that in a scenario of interplanetary transfer of life, small rock ejecta ofa few cm in diameter could be sufficiently large to protectbacterial spores against the intense insolation; however, micron-sized grains, as originally requested by Panspermia, may notprovide sufficient protection for spores to survive. The data arealso pertinent to search for life on Mars and planetaryprotection considerations for future missions to Mars.

bacterial spores extraterrestrial UV radiation interplanetary transfer of life life on Mars meteorites Panspermia space experiments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrhenius, S.: 1903, Die Verbreitung des Lebens im Weltenraum, Die Umschau 7, 481–485.Google Scholar
  2. Baltschukat, K. and Horneck, G.: 1991, Responses to accelerated heavy ions of spores of Bacillus subtilis of different repair capacity, Radiat. Environ. Biophys. 30, 87–103.Google Scholar
  3. Becker, R. H. and Pepin, R. O.: 1984, The case for a Martian origin of the shergottites: Nitrogen and noble gases in EETA 79001, Earth Planet. Sci. Lett. 69, 225–242.Google Scholar
  4. Burger, F.: 1995, BIOPAN, a multi-purpose exposure facility for space research, in Proc. Sixth European Space Mechanisms and Technology Symposium, Zürich, October 4–6, 1995, ESA SP-374, pp. 313–318.Google Scholar
  5. Clark, B., Baker, A. L., Chen, A. F., Clemett, S. J., McKay, D., McSween, H. Y., Pieters, C. M., Thomas, P. and Zolensky, M.: 1999, Survival of life on asteroids, comets and other small bodies, Origins Life Evol. Biosphere 29, 521–545.Google Scholar
  6. Clark, B.: 2001, Planetary interchange of bioactive material: Probability factors and implications, Origins Life Evol. Biosphere 31, 185–197.Google Scholar
  7. Crowe, L. M. and Crowe, J. H.: 1992, Anhydrobiosis: A strategy for survival, Adv. Space Res. 12, (4)239-(4)247.Google Scholar
  8. Delonge, R.: 1993, Design of an Experiment Hardware for the ESA Space Facility 'BIOPAN', DLR Forschungsbericht DLR-FB 93–06, Köln.Google Scholar
  9. Franchi, M., Bramanti, E., Morassi Bonzi, L., Orioli, P. L., Vettori, C., Gallori, E.: 1999, Claynucleic acid complexes: characteristics and implications for the preservations of genetic material in primeval habitats, Origins Life Evol. Biosphere 29, 297–315.Google Scholar
  10. Gladman, B.: 1997, Destination Earth: Martian meteorite delivery, Icarus 130, 228–246.Google Scholar
  11. Horneck, G.: 1993, Responses of Bacillus subtilis spores to space environment: Results from experiments in space, Origins Life Evol. Biosphere 23, 37–52.Google Scholar
  12. Horneck, G.: 1999, Astrobiology studies of microbes in simulated interplanetary space, in P. Ehrenfreund, C. Krafft, H. Kochan and V. Pirronello (eds), Laboratory Astrophysics and Space Research, Kluwer, Dordrecht, pp. 667–685.Google Scholar
  13. Horneck, G., Bücker, H., Reitz, G., Requardt, H., Dose, K., Martens, K. D., Mennigmann, H. D. and Weber, P.: 1984, Microorganisms in the Space Environment, Science 225, 226–228.Google Scholar
  14. Horneck, G. and Brack, A.: 1992, Study of the Origin, Evolution and Distribution of Life with Emphasis on Exobiology Experiments in Earth Orbit, in S. L. Bonting (ed.), Advances in Space Biology and Medicine, Vol. 2, JAI Press, Greenwich, CT, pp. 229–262.Google Scholar
  15. Horneck, G., Bücker, H. and Reitz, G.: 1994, Long-term survival of bacterial spores in space, Adv. Space Res. 14, (10)41-(10)45.Google Scholar
  16. Horneck, G., Eschweiler, U., Reitz, G., Wehner, J. Willimek R., and Strauch, K.: 1995, Biological responses to space: Results of the experiment 'Exobiological Unit' of ERA on EURECA I, Adv. Space Res. 16, (8)105-(8)111.Google Scholar
  17. Horneck, G., Wynn-Williams, D. D., Mancinelli, R., Cadet, J., Munakata, N., Rontó, G., Edwards, H. G. M., Hock, B., Wänke, H., Reitz, G., Dachev, T., Häder, D. P., and Brillouet, C.: 1999, Biological experiments on the EXPOSE facility of the International Space Station, in Proc. 2nd Europ. Symp. on Utilisation of the Internat. Space Station, ESTEC, Noordwijk, ESA SP-433, pp. 459–468.Google Scholar
  18. Horneck, G., Stöffler, D., Eschweiler, U. and Hornemann, U.: 2001a, Bacterial spores survive simulated meteorite impact, Icarus 149, 285–193.Google Scholar
  19. Horneck, G., Mileikowsky, C., Melosh, H. J., Wilson, J. W., Cucinotta, F. A. and Gladman, B.: 2001b, Viable transfer of microorganisms in the solar system and beyond, in G. Horneck and C. Baumstark-Khan (eds), Astrobiology, Springer, Heidelberg (in press).Google Scholar
  20. Lindberg, C. and Horneck, G.: 1991, Action spectra for survival and spore photoproduct formation of Bacillus subtilis irradiated with short-wavelength (200–300 nm) UV at atmospheric pressure and in vacuo, J. Photochem. Photobiol. B: Biol. 11, 69–80.Google Scholar
  21. Mancinelli, R. L. and Klovstad, M.: 2000, Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces, Planet. Space Sci. 48, 1093–1097.Google Scholar
  22. Melosh, H. J.: 1988. The rocky road to Panspermia, Nature 332, 687–688.Google Scholar
  23. Mileikowsky, C., Cucinotta, F. A., Wilson, J. W., Gladman, B., Horneck, G., Lindegren, L., Melosh, H. J., Rickman, H., Valtonen, M. and Zheng, J. Q.: 2000, Natural transfer of viable microbes in space. Part 1: From Mars to Earth and Earth to Mars, Icarus 145, 391–427.Google Scholar
  24. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. and Setlow, P.: 2000, Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments, Microb. Mol. Biol. Rev. 64, 548–572.Google Scholar
  25. Nussinov, M. D. and Lysenko, S. V.: 1983, Cosmic vacuum prevents radiopanspermia, Origins of Life 13, 153–164.Google Scholar
  26. Nussinov, M. D. and Lysenko, S. V.: 1992, Can spores arrive alive in interstellar space? J. Brit. Interplanet. Soc. 45, 22.Google Scholar
  27. Piggot, P. J., Moran Jr., C. P. and Youngman, P. (eds): 1994, Regulation of Bacterial Differentiation, American Society for Microbiology, Washington, D.C.Google Scholar
  28. Reitz, G.: 1993, Absorbed dose measurements using BIOPAN, Preliminary Report to ESA.Google Scholar
  29. Rettberg, P., Eschweiler, U., Reitz, G., Horneck, G., Wänke, H., Brack, A. and Barbier, B.: 2001, The experiment 'Exobiologie' of the PERSEUS mission, Proc. International Scientific Cooperation onboard MIR, Lyon, France, March 19–21, 2001, CNES, pp. 327–333.Google Scholar
  30. Setlow, P.: 1995. Mechanisms for the prevention of damage to DNA in spores of Bacillus species, Ann. Rev. Microbiol. 49, 29–54.Google Scholar
  31. Vettori, C., Gallori, E. and Stotzki, G.: 2000, Clay minerals protect PBS1 of Bacillus subtilis against inactivation and loss of transducing ability by UV radiation, Can. J. Microbiol. 46, 770–773.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Gerda Horneck
    • 1
    Email author
  • Petra Rettberg
    • 2
  • Günther Reitz
    • 1
  • Jörg Wehner
    • 1
  • Ute Eschweiler
    • 1
  • Karsten Strauch
    • 1
  • Corinna Panitz
    • 1
  • Verena Starke
    • 1
  • Christa Baumstark-Khan
    • 2
  1. 1.Institute of Aerospace MedicineGerman Aerospace Center DLRGermany
  2. 2.Institut für FlugmedizinRWTH AachenAachenGermany

Personalised recommendations