Skip to main content
Log in

A Continuum Reaction Field Theory of Polarizable, Nondipolar, Quadrupolar Solvents: Ab Initio Study of Equilibrium Solvation in Benzene

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A continuum theory to describe solvation in nondipolar quadrupolar solvents is developed by accounting for electronic polarizability. A general Hamiltonian for a solute–solvent system in an arbitrary nonequilibrium configuration is obtained in terms of two field variables—densities of the solvent quadrupole and induced dipole moments. Equilibrium solvation is studied by optimizing this Hamiltonian with account of cavity boundaries. As an application, electronic structures and free energies of small molecules in benzene are examined with ab initio methods. Solvation stabilization due to solvent quadrupole moments is found to be substantial; for the solutes considered here, it is comparable to and often in excess of that arising from solvent-induced dipole moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).

    Google Scholar 

  2. J. L. Rivail, D. Rinaldi, and M. F. Ruiz-Lopez, in Computational Chemistry: Review of Current Trends, J. Lecszynsky, ed. (World Scientific, Singapore, 1995).

    Google Scholar 

  3. C. J. Cramer and D. J. Truhlar, Chem. Rev. 99, 2161 (1999).

    Google Scholar 

  4. See, e.g., C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd edn. (Verlag Chemie, Weinheim, 1988).

    Google Scholar 

  5. I. A. Koppel and V. A. Palm, Org. Reactivity (Tartu) 6, 213 (1969).

    Google Scholar 

  6. M. R. Wasielewski, M. P. Niemczyk, W. A. Svec and E. B. Pewitt, J. Amer. Chem. Soc. 107, 1080 (1985).

    Google Scholar 

  7. R. J. Harrison, B. Pearce, G. S. Beddard, J. A. Cowan, and J. K. M. Sanders, Chem. Phys. 116, 429 (1987).

    Google Scholar 

  8. S. Chatterjee, P. D. Davis, P. Gottschalk, M. E. Kurz, B. Sauerwein, X. Yang, and G. B. Schuster, J. Amer. Chem. Soc. 112, 6329 (1990).

    Google Scholar 

  9. T. Asahi, M. Ohkohchi, R. Matsusaka, N. Mataga, R. P. Zhang, A. Osuka, and K. Maruyama, J. Amer. Chem. Soc. 115, 5665 (1993).

    Google Scholar 

  10. I. Read, A. Napper, R. Kaplan, M. B. Zimmt, and D. H. Waldeck, J. Amer. Chem. Soc. 121, 10976 (1999); I. Read, A. Napper,M. B. Zimmt, and D. H.Waldeck, J. Phys. Chem. A 104, 9385 (2000).

    Google Scholar 

  11. M. Berg, Chem. Phys. Lett. 228, 317 (1994).

    Google Scholar 

  12. L. Reynolds, J. A. Gardecki, S. J. V. Frankland, M. L. Horng, and M. Maroncelli, J. Phys. Chem. 100, 10337 (1996).

    Google Scholar 

  13. D. S. Larsen, K. Ohta, and G. R. Fleming, J. Chem. Phys. 111, 8970 (1999).

    Google Scholar 

  14. F. N. H. Robinson, Macroscopic Electromagnetism (Pergamon, Oxford, 1973).

    Google Scholar 

  15. D. Adu-Gyamfi, Physica 93A, 553 (1978).

    Google Scholar 

  16. D. E. Logan, Mol. Phys. 44, 1271 (1981).

    Google Scholar 

  17. P. G. de Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971).

    Google Scholar 

  18. J. F. Palierne, Europhys. Lett. 4, 1009 (1987).

    Google Scholar 

  19. L. R. Evangelista and G. Barbero, Phys. Lett. A 185, 213 (1994).

    Google Scholar 

  20. S. M. Chitanvis, J. Chem. Phys. 104, 9065 (1996).

    Google Scholar 

  21. D. V. Matyushov and G. A. Voth, J. Chem. Phys. 111, 3630 (1999).

    Google Scholar 

  22. G. Stell, J. C. Rasaiah, and H. Narang, Mol. Phys. 27, 1393 (1974).

    Google Scholar 

  23. C. G. Gray and K. E. Gubbins, Mol. Phys. 30, 1481 (1975); K. E. Gubbins, C. G. Gray, and J. R. S. Machado, Mol. Phys. 42, 817 (1981).

    Google Scholar 

  24. G. N. Patey and J. P. Valleau, J. Chem. Phys. 64, 170 (1976); G. N. Patey, D. Levesque, and J. J. Weis, Mol. Phys. 38, 1635 (1979).

    Google Scholar 

  25. D. E. Logan, Mol. Phys. 46, 1155 (1982).

    Google Scholar 

  26. D. V. Matyushov, Chem. Phys. 174, 199 (1993); D. V. Matyushov and R. Schmid, J. Chem. Phys. 103, 2034 (1995).

    Google Scholar 

  27. B.-C. Perng, M. D. Newton, F. O. Raineri, and H. L. Friedman, J. Chem. Phys. 104, 7153, 7177 (1996).

    Google Scholar 

  28. J. Jeon and H. J. Kim, J. Phys. Chem. A 104, 9812 (2000).

    Google Scholar 

  29. D. E. Logan, Mol. Phys. 51, 1365 (1984).

    Google Scholar 

  30. J. Jeon and H. J. Kim, J. Chem. Phys., submitted.

  31. R. A. Marcus, J. Chem. Phys. 24, 979 (1956); J. Phys. Chem. 96, 1753 (1992).

    Google Scholar 

  32. B. U. Felderhof, J. Chem. Phys. 67, 493 (1977).

    Google Scholar 

  33. H. J. Kim, J. Chem. Phys. 105, 6818 (1996).

    Google Scholar 

  34. See, e.g., C. J. F. Böttcher, Theory of Electric Polarisation (Elsevier, Amsterdam, 1952).

    Google Scholar 

  35. J. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989). Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland,Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DEAC06-76RLO 1830.

    Google Scholar 

  36. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comp. Chem. 14, 1347 (1993); A. A. Granovsky, PC GAMESS, www http://classic.chem.msu.su/gran/gamess/index.html.

    Google Scholar 

  37. J. T. Edward, J. Chem. Educ. 47, 261 (1970).

    Google Scholar 

  38. M. W. Wong, M. J. Frisch, and K. B. Wiberg, J. Amer. Chem. Soc. 113, 4776 (1991).

    Google Scholar 

  39. R. M. Ernst, L. Wu, C.-H. Liu, S. R. Nagel, and M. E. Neubert, Phys. Rev. B 45, 667 (1992).

    Google Scholar 

  40. H. J. Kim and J. T. Hynes, J. Chem. Phys. 96, 5088 (1992); H. J. Kim, R. Bianco, B. J. Gertner, and J. T. Hynes, J. Phys. Chem. 97, 1723 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, J., Kim, H.J. A Continuum Reaction Field Theory of Polarizable, Nondipolar, Quadrupolar Solvents: Ab Initio Study of Equilibrium Solvation in Benzene. Journal of Solution Chemistry 30, 849–860 (2001). https://doi.org/10.1023/A:1012715929287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012715929287

Navigation