Abstract
A continuum theory to describe solvation in nondipolar quadrupolar solvents is developed by accounting for electronic polarizability. A general Hamiltonian for a solute–solvent system in an arbitrary nonequilibrium configuration is obtained in terms of two field variables—densities of the solvent quadrupole and induced dipole moments. Equilibrium solvation is studied by optimizing this Hamiltonian with account of cavity boundaries. As an application, electronic structures and free energies of small molecules in benzene are examined with ab initio methods. Solvation stabilization due to solvent quadrupole moments is found to be substantial; for the solutes considered here, it is comparable to and often in excess of that arising from solvent-induced dipole moments.
Similar content being viewed by others
REFERENCES
J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).
J. L. Rivail, D. Rinaldi, and M. F. Ruiz-Lopez, in Computational Chemistry: Review of Current Trends, J. Lecszynsky, ed. (World Scientific, Singapore, 1995).
C. J. Cramer and D. J. Truhlar, Chem. Rev. 99, 2161 (1999).
See, e.g., C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd edn. (Verlag Chemie, Weinheim, 1988).
I. A. Koppel and V. A. Palm, Org. Reactivity (Tartu) 6, 213 (1969).
M. R. Wasielewski, M. P. Niemczyk, W. A. Svec and E. B. Pewitt, J. Amer. Chem. Soc. 107, 1080 (1985).
R. J. Harrison, B. Pearce, G. S. Beddard, J. A. Cowan, and J. K. M. Sanders, Chem. Phys. 116, 429 (1987).
S. Chatterjee, P. D. Davis, P. Gottschalk, M. E. Kurz, B. Sauerwein, X. Yang, and G. B. Schuster, J. Amer. Chem. Soc. 112, 6329 (1990).
T. Asahi, M. Ohkohchi, R. Matsusaka, N. Mataga, R. P. Zhang, A. Osuka, and K. Maruyama, J. Amer. Chem. Soc. 115, 5665 (1993).
I. Read, A. Napper, R. Kaplan, M. B. Zimmt, and D. H. Waldeck, J. Amer. Chem. Soc. 121, 10976 (1999); I. Read, A. Napper,M. B. Zimmt, and D. H.Waldeck, J. Phys. Chem. A 104, 9385 (2000).
M. Berg, Chem. Phys. Lett. 228, 317 (1994).
L. Reynolds, J. A. Gardecki, S. J. V. Frankland, M. L. Horng, and M. Maroncelli, J. Phys. Chem. 100, 10337 (1996).
D. S. Larsen, K. Ohta, and G. R. Fleming, J. Chem. Phys. 111, 8970 (1999).
F. N. H. Robinson, Macroscopic Electromagnetism (Pergamon, Oxford, 1973).
D. Adu-Gyamfi, Physica 93A, 553 (1978).
D. E. Logan, Mol. Phys. 44, 1271 (1981).
P. G. de Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971).
J. F. Palierne, Europhys. Lett. 4, 1009 (1987).
L. R. Evangelista and G. Barbero, Phys. Lett. A 185, 213 (1994).
S. M. Chitanvis, J. Chem. Phys. 104, 9065 (1996).
D. V. Matyushov and G. A. Voth, J. Chem. Phys. 111, 3630 (1999).
G. Stell, J. C. Rasaiah, and H. Narang, Mol. Phys. 27, 1393 (1974).
C. G. Gray and K. E. Gubbins, Mol. Phys. 30, 1481 (1975); K. E. Gubbins, C. G. Gray, and J. R. S. Machado, Mol. Phys. 42, 817 (1981).
G. N. Patey and J. P. Valleau, J. Chem. Phys. 64, 170 (1976); G. N. Patey, D. Levesque, and J. J. Weis, Mol. Phys. 38, 1635 (1979).
D. E. Logan, Mol. Phys. 46, 1155 (1982).
D. V. Matyushov, Chem. Phys. 174, 199 (1993); D. V. Matyushov and R. Schmid, J. Chem. Phys. 103, 2034 (1995).
B.-C. Perng, M. D. Newton, F. O. Raineri, and H. L. Friedman, J. Chem. Phys. 104, 7153, 7177 (1996).
J. Jeon and H. J. Kim, J. Phys. Chem. A 104, 9812 (2000).
D. E. Logan, Mol. Phys. 51, 1365 (1984).
J. Jeon and H. J. Kim, J. Chem. Phys., submitted.
R. A. Marcus, J. Chem. Phys. 24, 979 (1956); J. Phys. Chem. 96, 1753 (1992).
B. U. Felderhof, J. Chem. Phys. 67, 493 (1977).
H. J. Kim, J. Chem. Phys. 105, 6818 (1996).
See, e.g., C. J. F. Böttcher, Theory of Electric Polarisation (Elsevier, Amsterdam, 1952).
J. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989). Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland,Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DEAC06-76RLO 1830.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comp. Chem. 14, 1347 (1993); A. A. Granovsky, PC GAMESS, www http://classic.chem.msu.su/gran/gamess/index.html.
J. T. Edward, J. Chem. Educ. 47, 261 (1970).
M. W. Wong, M. J. Frisch, and K. B. Wiberg, J. Amer. Chem. Soc. 113, 4776 (1991).
R. M. Ernst, L. Wu, C.-H. Liu, S. R. Nagel, and M. E. Neubert, Phys. Rev. B 45, 667 (1992).
H. J. Kim and J. T. Hynes, J. Chem. Phys. 96, 5088 (1992); H. J. Kim, R. Bianco, B. J. Gertner, and J. T. Hynes, J. Phys. Chem. 97, 1723 (1993).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jeon, J., Kim, H.J. A Continuum Reaction Field Theory of Polarizable, Nondipolar, Quadrupolar Solvents: Ab Initio Study of Equilibrium Solvation in Benzene. Journal of Solution Chemistry 30, 849–860 (2001). https://doi.org/10.1023/A:1012715929287
Issue Date:
DOI: https://doi.org/10.1023/A:1012715929287