Skip to main content
Log in

Regeneration of phasic synapses on a crayfish slow muscle following allotransplantation of a mixed phasic-tonic nerve

  • Published:
Journal of Neurocytology

Abstract

Separate phasic or tonic nerves allotransplanted to reinnervate a denervated slow superficial flexor muscle (SFM) in the abdomen of adult crayfish regenerate synaptic nerve terminals with phasic or tonic properties. To test competitive interactions between tonic and phasic axons, we allotransplanted the sixth abdominal ganglion with its third nerve root containing a mixture of phasic and tonic axons onto the denervated SFM. The resulting reinnervation of the SFM was compared to the normal innervation on the contralateral intact SFM, which receives innervation only from tonic motoneurons. Variable sizes of excitatory postsynaptic potentials indicated that 2–3 axons innervated each muscle fiber of the SFM in both the allotransplant and normal preparations. Compared to the normal tonic terminals on the intact contralateral side, the allotransplanted synaptic terminals had more phasic-like properties; specificially, they gave rise to larger synaptic potentials, had a lower mitochondrial content and contained a higher density of active zone dense bars per synapse. Moreover, prolific sprouting of the axons in the regenerated nerve, typical of phasic axons, points to more vigorous regeneration of phasic rather than tonic axons to the denervated SFM. In keeping with this prolific axon sprouting, there was both a much higher density of innervation in the allotransplanted SFM compared to the normal SFM, and a higher frequency of extrasynaptic active zones in regenerated terminals of the mixed nerve compared to those of the tonic nerve. Thus, an allotransplanted mixed nerve regenerates mainly phasic axons and synapses on the slow denervated SFM, demonstrating the instructive nature of the neuron in synapse specification, as well as the permissive nature of the target muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcaro, K. F. & Lnenicka, G. A. (1995) Intrinsic differences in axonal growth from crayfish fast and slow motoneurons. Developmental Biology 168, 272–283.

    Google Scholar 

  • Atwood, H. L. (1976) Organization and synaptic physiology of crustacean neuromuscular systems. Progress in Neurobiology 7, 291–391.

    Google Scholar 

  • Atwood, H. L. & Cooper, R. L. (1996) Synaptic diversity and differentiation: Crustacean neuromuscular junctions. Invertebrate Neuroscience 1, 291–307.

    Google Scholar 

  • Atwood, H. L. & Wojtowicz, M. J. (1986) Short-term and long-term plasticity and physiological differentiation of crustacean motor systems. International Review of Neurobiology 28, 275–362.

    Google Scholar 

  • Bradacs, H., Cooper, R. L., Msghina, M. & Atwood, H. L. (1997) Differential physiology and morphology of phasic and tonic motor axons in a crayfish limb extensor muscle. Journal of Experimental Biology 200, 677–691.

    Google Scholar 

  • Clement, J. F., Taylor, A. K. & Velez, S. J. (1983) Effect of a limited target area on the regeneration of specific neuromuscular connections in a crayfish. Journal of Neurophysiology 49, 216–226.

    Google Scholar 

  • Ely, P. & Velez, S. J. (1982) Regeneration of specific neuromuscular connections in the crayfish. I. Patterns of connections and synaptic strength. Journal of Neurophysiology 47, 656–665.

    Google Scholar 

  • Feng, G., Laskowski, M. B., Feldheim, D. A., Wang, H., Lewis, R., Frisen, J., Flanagan, J. G. & Sanes, J. R. (2000) Roles for ephrins in positionally selective synaptogenesis between motor neurons and muscle fibers. Neuron 25, 295–306.

    Google Scholar 

  • Goodman, C. C. & Shatz, C. (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell/Neuron 10, 77–98.

    Google Scholar 

  • Govind, C. K., Atwood, H. L. & Lang, F. (1973) Synaptic differentiation in a crab limb muscle. Proceedings of the National Academy of Sciences USA 70, 822–826.

    Google Scholar 

  • Grinnell, A. D. & Herrera, A. A. (1981) Specificity and plasticity of neuromuscular connections: Long-term regulation of motoneuron function. Progress in Neurobiology 17, 203–282.

    Google Scholar 

  • Hall, Z. W. & Sanes, J. R. (1993) Synaptic structure and development: The neuromuscular junction. Cell/Neuron 10, 99–122.

    Google Scholar 

  • Higuchi, T. (1992) Topography and distribution of motor neurons supplying uropod muscles of a crayfish. Comparative Biochemistry and Physiology 103A, 705–709.

    Google Scholar 

  • Hirji, R., Coulthard, R. & Govind, C. K. (2000) Regenerated synaptic terminals on a slow muscle identify with transplanted phasic or tonic axons. Journal of Neurobiology 45, 185–193.

    Google Scholar 

  • Hnik, P., Jirmanova, I., Vyklicky, L. & Zelelna, J. (1967) Fast and slow muscles of the chick after crossunion. Journal of Physiology (London) 193, 309–325.

    Google Scholar 

  • Kennedy, D. & Bittner, G. D. (1974) Ultrastructural correlates of motor nerve regeneration in crayfish. Cell and Tissue Research 148, 97–110.

    Google Scholar 

  • Kennedy, D. & Takeda, K. (1965a) Reflex control of abdominal flexor muscles in crayfish. I. The twitch system. Journal of Experimental Biology 43, 211–227.

    Google Scholar 

  • Kennedy, D. & Takeda, K. (1965b) Reflex control of abdominal flexor muscles in crayfish. II. The tonic system. Journal of Experimental Biology 43, 229–246.

    Google Scholar 

  • King, M. J. R., Atwood, H. L. & Govind, C. K. (1996) Structural features of crayfish phasic and tonic neuromuscular terminals. Journal of Comparative Neurology 372, 618–626.

    Google Scholar 

  • Krause, K. M. & Velez, S. J. (1995) Regeneration of neuromuscular connections in crayfish allotransplanted neurons. Journal of Neurobiology 27, 154–171.

    Google Scholar 

  • Krause, K. M., Pearce, J. & Govind, C. K. (1998) Regeneration of phasic motor axons on a tonic crayfish muscle: Neuron specifies synapses. Journal of Neurophysiology 80, 994–997.

    Google Scholar 

  • Krause, K. M., Pearce, J., Velez, S. & Govind, C. K. (1996) Structure of allotransplanted ganglia and regenerated neuromuscular connections in crayfish. Journal of Neurobiology 30, 439–453.

    Google Scholar 

  • Lnenicka, G. A. & Atwood, H. L. (1985) Age-dependent long-term adaptation of crayfish phasic motor axon synapses to altered activity. Journal of Neuroscience 5, 459–467.

    Google Scholar 

  • Msghina, M., Govind, C. K. & Atwood, H. L. (1998) Synaptic structure and transmitter release in crustacean phasic and tonic motor neurons. Journal of Neuroscience 18, 1374–1382.

    Google Scholar 

  • Msghina, M., Millar, A. G., Charlton, M. P., Govind, C. K. & Atwood, H. L. (1999) Calcium entry related to active zones and differences in transmitter release at phasic and tonic synapses. Journal of Neuroscience 19, 8419–8434.

    Google Scholar 

  • Nordlander, R. H. & Singer, M. (1972) Electron microscopy of severed motor fibers in the crayfish. Zeitschrift Zellforschung und mikroscopische Anatomie 126, 157–181.

    Google Scholar 

  • Nordlander, R. H. & Singer, M. (1976) Synaptoid profiles in regenerating crayfish peripheral nerves. Cell and Tissue Research 166, 445–460.

    Google Scholar 

  • Ogonowski, M. M. & Lang, F. (1979) Histochemical evidence for enzyme differences in crustacean fast and slow muscle. Journal of Experimental Zoology 207, 143–151.

    Google Scholar 

  • Pearce, J., Krause, K. M. & Govind, C. K. (1997) Muscle fibers in regenerating crayfish motor nerves. Journal of Neurophysiology 78, 3498–3501.

    Google Scholar 

  • Pearce, J., Govind, C. K. & Shivers, R. R. (1986) Intramembrane organization of lobster excitatory neuromuscular synapses. Journal of Neurocytology 15, 241–252.

    Google Scholar 

  • Prokop, A., Landgraf, M., Rushton, E., Broadie, K. & Bate, M. (1996) Presynaptic development at the Drosophila neuromuscular junction: Assembly and localization of presynaptic active zones. Neuron 17, 617–626.

    Google Scholar 

  • Sanes, J. R. & Lichtman, J. W. (1999) Development of the vertebrate neuromuscular junction. Annual Review of Neuroscience 22, 389–442.

    Google Scholar 

  • Schmidt. H. & Stefani, E. (1976) Re-innervation of twitch and slow muscle fibres of the frog after crushing the motor nerves. Journal of Physiology (London) 258, 99–123.

    Google Scholar 

  • Skinner, D. M. (1983) Molting and regeneration. In The Biology of Crustacea (edited by Bliss, D. E.) p. 43–146. New York: Academic Press.

    Google Scholar 

  • Stephens, P. J. & Govind, C. K. (1981) Peripheral innervation fields of single lobster motoneurons defined by synapse elimination during development. Brain Research 212, 476–480.

    Google Scholar 

  • Velez, S. J. & Wyman, R. J. (1978) Synaptic connectivity in a crayfish neuromuscular system. I. Gradient of innervation and synaptic strength. Journal of Neurophysiology 41, 75–84.

    Google Scholar 

  • Worden, M. K., Hwang, J-C. & Velez, S. J. (1988) Regeneration studies on a crayfish neuromuscular system. I. Connectivity changes after intersegmental nerve transplants. Journal of Neurobiology 19, 127–140.

    Google Scholar 

  • Wu, C.-F., Renger, J. J. & Engel, J. E. (1998) Activity-dependent functional and developmental plasticity of Drosophila neurons. Advances in Insect Physiology 27, 385–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Govind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulthard, R., Govind, C.K. Regeneration of phasic synapses on a crayfish slow muscle following allotransplantation of a mixed phasic-tonic nerve. J Neurocytol 30, 231–241 (2001). https://doi.org/10.1023/A:1012701824528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012701824528

Keywords

Navigation