Skip to main content
Log in

Corrosion studies by CEMS. Facing the experiment

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The fundamentals of Mössbauer Spectroscopy in the backscattering mode are given. The techniques used for the different backscattered particles and energies, and the experimental difficulties and advantages of each technique are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.E. Wagner, J. de Phys. C6 37 (1976) 673.

    Google Scholar 

  2. M.J. Tricker, in: Mössbauer Spectroscopy and its Chemical Applications, Advances in Chemistry Series, Vol. 194, eds. J.G. Stevens and G.K. Shenoy (Am. Chem. Soc., Washington, DC, 1981) p. 63.

    Google Scholar 

  3. D. Liljequist, in: Scanning Electron Microscopy III, eds. R.M. Albrecht, I.B. Shelburne and J.D. Meakin (SEM Inc. AMF O'Hare, Chicago, 1983) p. 997.

    Google Scholar 

  4. J.M. Friedt, Tech. Ing. P2 608 (1984) 1.

    Google Scholar 

  5. B.J. Tatarchuk and J.A. Dumesic, in: Chemistry and Physics of Solid Surfaces, Vol. 5, Springer Ser. Chem. Phys., Vol. 35, eds. R. Vanselow and R. Howe (Springer-Verlag, Berlin-Heidelberg, 1984) p. 65.

    Google Scholar 

  6. J.A. Sawicki, in: Industrial Applications of the Mössbauer Effect, eds. G.J. Long and J.G. Stevens (Plenum Press, New York-London, 1986) p. 83.

    Google Scholar 

  7. M. Carbucicchio, in: Magnetic Properties of Matter, eds. G. Asti, D. Fiorani and F. Lucari (Word Scientific, Singapore, 1991) p. 500.

    Google Scholar 

  8. J.R. Gancedo, M. Gracia and J.F. Marco, Hyp. Interact. 66 (1991) 83.

    Article  Google Scholar 

  9. K.R. Swanson and J.J. Spijkerman, J. Appl. Phys. 41 (1970) 3155.

    Article  Google Scholar 

  10. D.C. Cook, Hyp. Interact. 29 (1986) 1463.

    Article  Google Scholar 

  11. G. Weyer, in: Mössbauer Effect Methodology, Vol. 10, eds. I.J. Gruverman and C.W. Seidel (Plenum Press, New York, 1976) p. 301.

    Google Scholar 

  12. J.R. Gancedo and M. Gracia, Hyp. Interact. 29 (1986) 1097.

    Article  Google Scholar 

  13. G. Weyer, Hyp. Interact. 58 (1990) 2561.

    Article  Google Scholar 

  14. H. Nakagawa, Y. Ujihira and M. Inaba, Nucl. Instr. Meth. 196 (1982) 573.

    Article  Google Scholar 

  15. A.P. Kuprin and A.A. Novakova, Nucl. Instr. Meth. Phys. Res. B 62 (1992) 493.

    Article  ADS  Google Scholar 

  16. S. Kishimoto, Y. Isozumi, R. Katano and H. Takekoshi, Nucl. Instr. Meth. Phys. Res. A 262 (1987) 413.

    Article  ADS  Google Scholar 

  17. K. Fukumura, R. Katano, T. Kobayashi, A. Nakanishi and Y. Isozumi, Nucl. Instr. Meth. Phys. Res. A 301 (1991) 482.

    Article  ADS  Google Scholar 

  18. K. Fukumura, A. Nakanishi and T. Kobayashi, Nucl. Instr. Meth. Phys. Res. B 86 (1994) 387.

    Article  ADS  Google Scholar 

  19. T. Kobayashi, K. Fukumura and A. Nakanishi, in: ICAME-95, Conference Proceedings, Vol. 50, ed. I. Ortalli (SIF, Bologna, 1996) p. 899.

    Google Scholar 

  20. J. Parellada, M.R. Polkari, K. Burin and G.M. Rothberg, Nucl. Instr. Meth. 179 (1981) 113.

    Article  Google Scholar 

  21. T.S. Yang, B. Kolk, T. Kachnowski, J. Trooster and N. Benczer-Koller, Nucl. Instr. Meth. 197 1982) 545.

    Article  Google Scholar 

  22. Z.M. Stadnik, H.R. Borsje, A.E.M. Swolfs, W.H.A. Leenders and J.C. Fuggle, Rev. Sci. Instrum. 60 (1989) 708.

    Article  ADS  Google Scholar 

  23. P. Auric, A. Baudry, M. Bogé, J. Rocco and L. Trabut, Hyp. Interact. 58 (1990) 2491.

    Article  Google Scholar 

  24. J.A. Tabares, PhD Thesis (Universidad Complutense de Madrid, 1995).

  25. T. Toriyama, K. Asano, K. Saneyoshi and K. Hisatake, Nucl. Instr. Meth. Phys. Res. B 4 (1984) 170.

    Article  ADS  Google Scholar 

  26. H.M. Van Noort, F.J. Ferguson, C.J.G. Verwer, A.A. Van Gorkum, J.M.E. Van Laarhoven and C.J.M. Denissen, Nucl. Instr. Meth. Phys. Res. B 34 (1988) 391.

    Article  ADS  Google Scholar 

  27. H.M. Van Noort and A.A. Van Gorkum, J. Phys. E. Sci. Instrum. 21 (1988) 587.

    Article  ADS  Google Scholar 

  28. M.P. Seah and W.A. Dench, Surf. Interface Anal. 1 (1979) 1.

    Article  Google Scholar 

  29. C. Feldman, Phys. Rev. 117 (1960) 455.

    Article  ADS  Google Scholar 

  30. J. Itoh, T. Toriyama, K. Saneyoshi and K. Hisatake, Nucl. Instr. Meth. 205 (1983) 279.

    Article  Google Scholar 

  31. Ph. Bauer and G. Marchal, in: ICAME-95, Conference Proceedings, Vol. 50, ed. I. Ortalli (SIF, Bologna, 1996) p. 895.

    Google Scholar 

  32. H. Leidheiser Jr., G.W. Simmons and E. Kellerman, Croat. Chem. Act 45 (1973) 257.

    Google Scholar 

  33. W. Meisel, Hyp. Interact. 45 (1989) 73.

    Article  Google Scholar 

  34. M. Stratman and K. Hoffman, Corros. Sci. 29 (1989) 1322.

    Google Scholar 

  35. J.A. Tabares, M. Gracia, J.F. Marco and J.R. Gancedo, Nuovo Cimento D 18 (1996) 325.

    Google Scholar 

  36. J.G. Stevens, L.H. Bowen and K.M. Whatley, Anal. Chem. 60 (1988) 90R.

    Article  Google Scholar 

  37. J. Friedl, A. Füsell, A.R. Gebhardt, A. Kyek, G. Lehrberger, T. Kobayashi, M. Regen and F.E. Wagner, in: ICAME-95, Conference Proceedings, Vol. 50, ed. I. Ortalli (SIF, Bologna, 1996) p. 773.

    Google Scholar 

  38. J.F. Marco, J. Dávalos, M. Gracia and J.R. Gancedo, Hyp. Interact. 83 (1994) 111.

    Article  Google Scholar 

  39. O.J. Murphy, in: Electrochemistry in Transition, eds. O.J. Murphy et al. (Plenum Press, New York, 1992) p. 521.

    Google Scholar 

  40. G.N. Belozerskii, C. Bohm, T. Ekdahl and D. Liljequist, Nucl. Instr. Meth. 192 (1982) 539.

    Article  Google Scholar 

  41. G. Klingelhöfer and W. Meisel, Hyp. Interact. 57 (1990) 1911.

    Article  Google Scholar 

  42. B. Keish, Nucl. Instr. Meth. 104 (1972) 237.

    Article  Google Scholar 

  43. W. Meisel, Spectrochimica Acta B 39 (1984) 1505.

    ADS  Google Scholar 

  44. Y. Isozumi and S. Kishimoto, Rev. Sci. Instrum. 58 (1987) 293.

    Article  ADS  Google Scholar 

  45. R. Atkinson and T.E. Cranshaw, Nucl. Instr. Meth. 204 (1983) 577.

    Article  Google Scholar 

  46. G. Klingelhöfer, U. Imleller, E. Kankeleit and B. Stahl, Hyp. Interact. 69 (1991) 819.

    Article  Google Scholar 

  47. R.W. Hoffman, in: Passivity of Metals and Semiconductors, ed. M. Froment (Elsevier, Amsterdam, 1983) p. 147.

    Google Scholar 

  48. U. Stumm, W. Meisel and P. Gütlich, Hyp. Interact. 28 (1986) 923.

    Article  Google Scholar 

  49. G.P. Huffman and F.G. Huggins, in: Mössbauer Spectroscopy and its Chemical Applications, Advances in Chemistry Series, Vol. 194, eds. J.G. Stevens and G.K. Shenoy (Am. Chem. Soc., Washington, DC, 1981) p. 265.

    Google Scholar 

  50. G. Klingelhöfer and E. Kankeleit, Hyp. Interact. 57 (1990) 1905.

    Article  Google Scholar 

  51. F. Salvat and J.M. Fernández-Varea, Nucl. Instr. Meth. B 63 (1992) 255.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gancedo, J., Gracia, M., Marco, J. et al. Corrosion studies by CEMS. Facing the experiment. Hyperfine Interactions 111, 83–92 (1998). https://doi.org/10.1023/A:1012681012269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012681012269

Keywords

Navigation