Skip to main content
Log in

The Structure of Lie Algebras and the Classification Problem for Partial Differential Equations

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The present paper solves completely the problem of the group classification of nonlinear heat-conductivity equations of the form u t =F(t,x,u,u x )u xx +G(t,x,u,u x ). We have proved, in particular, that the above class contains no nonlinear equations whose invariance algebra has dimension more than five. Furthermore, we have proved that there are two, thirty-four, thirty-five, and six inequivalent equations admitting one-, two-, three-, four- and five-dimensional Lie algebras, respectively. Since the procedure which we use relies heavily upon the theory of abstract Lie algebras of low dimension, we give a detailed account of the necessary facts. This material is dispersed in the literature and is not fully available in English. After this algebraic part we give a detailed description of the method and then we derive the forms of inequivalent invariant evolution equations, and compute the corresponding maximal symmetry algebras. The list of invariant equations obtained in this way contains (up to a local change of variables) all the previously-known invariant evolution equations belonging to the class of partial differential equations under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fushchych, W. I. and Nikitin, A. G.: Symmetry of Equations of Quantum Mechanics, Allerton Press, New York, 1994.

    Google Scholar 

  2. Lie, S.: In: Gesammelte Abhandlungen, vol. 5, B. G. Teubner, Leipzig, 1924, pp. 767–773.

    Google Scholar 

  3. Lie, S.: In: Gesammelte Abhandlungen, vol. 6, Teubner, Leipzig, 1927, pp. 1–94.

    Google Scholar 

  4. Ovsjannikov, L. V.: Group Analysis of Differential Equations, Academic Press, New York, 1982.

    Google Scholar 

  5. Olver, P. J.: Applications of Lie Groups to Differential Equations, Springer, Berlin, 1986.

    Google Scholar 

  6. Fushchych, W. I., Shtelen, W. M. and Serov, N. I.: Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics, Naukova Dumka, Kiev, 1989 (English edn: Kluwer Acad. Publ., Dordrecht, 1993).

    Google Scholar 

  7. Heredero, R. H. and Olver, P. J.: Classification of invariant wave equations, J. Math. Phys. 37 (1996), 6419–6438.

    Google Scholar 

  8. Akhatov, I. S., Gazizov, R. K. and Ibragimov, N. K.: Group classification of equations of nonlinear filtration, Proc. Acad. Sci. USSR 293 (1987), 1033–1035 (in Russian).

    Google Scholar 

  9. Akhatov, I. S., Gazizov, R. K. and Ibragimov, N. K.: Nonlocal symmetries. A heuristic approach (in Russian), In: Sovremennye Problemy Matematiki. Novejshie Dostizheniya, 34, Nauka, Moscow, 1989, pp. 3–83.

    Google Scholar 

  10. Torrisi, M., Tracina, R. and Valenti, A.: A group analysis approach for a nonlinear differential system arising in diffusion phenomena, J. Math. Phys. 37 (1996), 4758–4767.

    Google Scholar 

  11. Torrisi, M. and Tracina, R.: Equivalence transformations and symmetries for a heat conduction model, Int. J. of Non-Linear Mechanics 33 (1998), 473–487.

    Google Scholar 

  12. Ibragimov, N. H., Torrisi, M. and Valenti, A.: Preliminary group classification of equation v tt = f (x, v x )v xx + g(x, v x ), J. Math. Phys. 32 (1991), 2988–2995.

    Google Scholar 

  13. Ibragimov, N. K. and Torrisi, M.: A simple method for group analysis and its applications to a model of detonation, J. Math. Phys. 33 (1992), 3931–3937.

    Google Scholar 

  14. Kingston, J. G. and Sophocleous, C.: On form-preserving point transformations of partial differential equations, J. Phys. A: Math. Gen. 31 (1998), 1595–1619.

    Google Scholar 

  15. Zhdanov, R. Z. and Lahno, V. I.: Group classification of heat conductivity equations with a nonlinear source, J. Phys. A: Math. Gen. 32 (1999), 7405–7418.

    Google Scholar 

  16. Gagnon, L. and Winternitz, P.: Symmetry classes of variable coefficient nonlinear Schrödinger equations, J. Phys. A: Math. Gen. 26 (1993), 7061–7076.

    Google Scholar 

  17. Barut, A. O. and Raczka, R.: Theory of Group Representations and Applications, PWN-Polish Scientific, Warszawa, 1977.

    Google Scholar 

  18. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.

    Google Scholar 

  19. Morozov, V. V.: Classification of six-dimensional nilpotent Lie algebras (in Russian), Izv. Vys. Ucheb. Zaved. no. 5(5) (1958), 161–171.

    Google Scholar 

  20. Mubarakzyanov, G. M.: On solvable Lie algebras, Izv.Vys. Ucheb. Zaved. no. 1(32) (1963), 114–123 (in Russian).

    Google Scholar 

  21. Mubarakzyanov, G. M.: The classification of the real structure of five-dimensional Lie algebras, Izv. Vys. Ucheb. Zaved. no. 3(34) (1963), 99–105 (in Russian).

    Google Scholar 

  22. Mubarakzyanov, G. M.: The classification of six-dimensional Lie algebras with one nilpotent basis element, Izv. Vys. Ucheb. Zaved. no. 4(35) (1963), 104–116 (in Russian).

    Google Scholar 

  23. Mubarakzyanov, G. M.: Some theorems on solvable Lie algebras, Izv. Vys. Ucheb. Zaved. no. 3(55) (1966), 95–98 (in Russian).

    Google Scholar 

  24. Turkowski, P.: Solvable Lie algebras of dimensional six, J. Math. Phys. 31 (1990), 1344–1350.

    Google Scholar 

  25. Turkowski, P.: Low-dimensional real Lie algebras, J. Math. Phys. 29 (1988), 2139–2144.

    Google Scholar 

  26. Ovsiannikov, L. V.: Group properties of nonlinear heat equation, Dokl. Akad. Nauk SSSR 125(3) (1959), 492–495 (in Russian).

    Google Scholar 

  27. Dorodnitsyn, V. A.: On invariant solutions of nonlinear heat equation with a source, Zh. Vychisl. Mat. i Mat. Fiz. 22 (1982), 1393–1400 (in Russian).

    Google Scholar 

  28. Oron, A. and Rosenau, P.: Some symmetries of the nonlinear heat and wave equations, Phys. Lett. A 118 (1986), 172–176.

    Google Scholar 

  29. Edwards, M. P.: Classical symmetry reductions of nonlinear diffusion-convection equations, Phys. Lett. A 190 (1994), 149–154.

    Google Scholar 

  30. Cherniha, R. and Serov, M.: Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms, European J. Appl. Math. 9 (1998), 527–542.

    Google Scholar 

  31. Gandarias, M. L.: Classical point symmetries of a porous medium equation, J. Phys. A: Math. Gen. 29 (1996), 607–633.

    Google Scholar 

  32. Sokolov, V. V.: On symmetries of evolution equations, Uspekhi Mat. Nauk 43 (1988), 133–163 (in Russian).

    Google Scholar 

  33. Magadeev, B. A.: On group classification of nonlinear evolution equations, Algebra i Analiz 5 (1993), 141–156 (in Russian).

    Google Scholar 

  34. King, J. R.: Exact results for the nonlinear diffusion equations \(\frac{{\partial u}}{{\partial t}} = \frac{\partial }{{\partial x}} ({u^{ - 4/3} \frac{{\partial u}}{{\partial x}}}) and \frac{{\partial u}}{{\partial t}} = \frac{\partial }{{\partial x}} ({u^{ - 2/3} \frac{{\partial u}}{{\partial x}}} )\) J. Phys. A: Math. Gen. 24 (1991), 5721–5745.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basarab-Horwath, P., Lahno, V. & Zhdanov, R. The Structure of Lie Algebras and the Classification Problem for Partial Differential Equations. Acta Applicandae Mathematicae 69, 43–94 (2001). https://doi.org/10.1023/A:1012667617936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012667617936

Navigation