Electrical and optical investigation on doping of II–VI compounds using radioactive isotopes

Abstract

Using radioactive isotopes of shallow dopants (Ag, As, Rb) as well as of native or isoelectronic elements (Se, Te, Cd, Sr) which were incorporated as host atoms and then transmuted into relevant dopants (transmutation doping) we investigated doping phenomena occurring in the wide band gap II–VI compounds CdTe, ZnTe, ZnSe and SrS by the classical methods of semiconductor physics: Hall effect, C–V and photoluminescence measurements. Thus, we could assign unambiguously defect features in electrical and photoluminescence measurements to extrinsic dopants by means of the half lives of radioactive decay. In As doped ZnSe samples we observed two states: a metastable effective mass like state and a deep state. The occurrence of the latter state is always linked with the high resistivity of As doped ZnSe crystals. The transmutation doping experiments reveal that the so-called self-compensation typical for wide band gab II–VI compounds can be overcome when the thermal treatment for dopant incorporation is time separated from its electrical activation, achieved using transmutation at room temperature. Under these conditions we found an almost one-to-one doping efficiency relative to the implanted dose. Thus, these investigations are a contribution to understanding compensation phenomena occurring due to interactions between dopants and native defects during conventional doping treatments.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    R.M. Park, M.B. Trofer, C.M. Rouleau, J.M. De Puydt and M.A. Haase, Appl. Phys. Lett. 57 (1990) 2127.

    Article  ADS  Google Scholar 

  2. [2]

    P.J. Soininen, E. Nykänen, L. Niinistöand M. Leskelä, Inorganic and Organic Electroluminescence, eds. R.H. Mauch and G.-H. Gumlich (Wissenschaft und Technik Verlag, Berlin, 1996) 149–151.

    Google Scholar 

  3. [3]

    H. Hartmann, R. Mach and B. Selle, in: Current Topics in Material Science, Vol. 9 (North-Holland, Amsterdam, 1982).

    Google Scholar 

  4. [4]

    H. Zimmermann, R. Boyn, P. Rudolph, J. Bollmann, A. Klimakow and R. Krause, Mater. Sci. Engrg. B 16 (1993) 139.

    Article  Google Scholar 

  5. [5]

    J. Qui, J.M. DePuydt, H. Chung and M.A. Haase, Appl. Phys. Lett. 59 (1991) 2993.

    ADS  Google Scholar 

  6. [6]

    Z. Yang, K.A. Bowers, J. Ren, Y. Lansari, J.W. Cook and J.F. Schetzina, Appl. Phys. Lett. 61(22) (1992) 2671.

    Article  ADS  Google Scholar 

  7. [7]

    E. Tournié, C. Morhain, C. Ongaretto, V. Bousquet, P. Brunet, G. Neu, J.-P. Faurie, R. Triboulet and J.O. Ndap, Mater. Sci. Engrg. B 43 (1997) 21.

    Article  Google Scholar 

  8. [8]

    K. Ohkawa, A. Tsujimura, S. Hayashi, S. Yoshii and T. Mitsuyu, Physica B 185 (1993) 112.

    Article  ADS  Google Scholar 

  9. [9]

    Z. Zhu, H. Mori and T. Yao, J. Appl. Phys. 73(3) (1993) 1146.

    Article  ADS  Google Scholar 

  10. [10]

    K. Ohkawa, T. Mitsuyu and O. Yamazaki, J. Appl. Phys. 62(8) (1987) 3216.

    Article  ADS  Google Scholar 

  11. [11]

    J.F. Swenberg, M.W. Wang, R.J. Miles, M.C. Phillips, A.T. Hunter, J.O. McCaldin and T.C. McGill, J. Crystal Growth 138 (1994) 692.

    Article  ADS  Google Scholar 

  12. [12]

    I.S. Hauksson, J. Simpson, S.Y. Wang, K.A. Prior and B.C. Cavenett, Appl. Phys. Lett. 61 (1992) 2671.

    Article  Google Scholar 

  13. [13]

    T. Yao, T. Matsumoto, S. Sasaki, C.K. Chung, Z. Zhu and F. Nishiyama, J. Crystal Growth 138 (1994) 290.

    Article  ADS  Google Scholar 

  14. [14]

    G.F. Neumark, J. Appl. Phys. 51 (19980) 3383.

  15. [15]

    D.J. Chadi, J. Crystal Growth 138 (1994) 295.

    Article  ADS  Google Scholar 

  16. [16]

    D.J. Chadi, Appl. Phys. Lett. 59 (27) (1991) 3589.

    Article  ADS  Google Scholar 

  17. [17]

    Y. Zhang, B.J. Skromme, S.M. Shibli and C. Tamargo, Phys. Rev. B 48(15) (1993) 10885.

    Article  ADS  Google Scholar 

  18. [18]

    G. Mandel, Phys. Rev. A 134 (1964) 1073.

    MathSciNet  Article  ADS  Google Scholar 

  19. [19]

    W. Faschinger, S. Ferreira, H. Sitter, R. Krump and G. Brunthaler, Mater. Sci. Forum 182–184 (1995) 29.

    Article  Google Scholar 

  20. [20]

    S. Yokone, T. Abe and T. Hoshina, J. Phys. Soc. Japan 46 (1979) 351.

    Article  ADS  Google Scholar 

  21. [21]

    K.O. Velthaus, B. Hüttl, U. Troppenz and R.H. Mauch, in: 1997 SID Internat. Symp., Digest of Technical Papers, p. 411.

  22. [22]

    W.-M. Li, M. Ritala, M. Leskelä, R. Lappalainen, M. Karjalainen, E. Soininen, C. Barthou, P. Benalloul, J. Benoit, E. Nykänen and L. Niinistö, in: Extended Abstracts of Internat. Conf. on Science and Technology of Display Phosphors, Huntington Beach, CA (November 1997) p. 109.

  23. [23]

    P.K. Ghosh and B. Ray, Progr. Crystal Growth Charact. 25 (1992) 1.

    Article  Google Scholar 

  24. [24]

    R. Pandey and S. Sivaraman, J. Phys. Chem. Solids 52(1) (1991) 211.

    Article  ADS  Google Scholar 

  25. [25]

    S.T. Lee, M. Kitagawa, K. Ichino and H. Kobayashi, Appl. Surface Sci. 100/101 (1996) 656.

    Article  ADS  Google Scholar 

  26. [26]

    V.X. Quang and B. Selle, Ionenimplantation in II-VI-Verbindungen, Akademie der Wissenschaften der DDR, Zentralinstitut für Elektronenphysik, preprint 88–3 (August 1988).

  27. [27]

    W.-M. Li, R. Lappalainen, J. Jokinen, M. Ritala, M. Leskeläand E. Soininen, in: Extended Abstracts of Internat. Conf. on Science and Technology of Display Phosphors, San Diego, CA (November 1996) p. 135.

  28. [28]

    M. Wienecke, H. Berger and M. Schenk, Mater. Sci. Engrg. B 16 (1993) 219.

    Article  Google Scholar 

  29. [29]

    E. Kugler, D. Fiander, B. Jonson, H. Haas, A. Przwloka, H.L. Ravn, D.J. Simon and K. Zimmer, Nucl. Instrum. Methods B 70 (1992) 41.

    Article  ADS  Google Scholar 

  30. [30]

    J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  31. [31]

    J. Crank, Mathematics of Diffusion (Oxford Univ. Press, New York, 1975).

    Google Scholar 

  32. [32]

    Th. Wichert, N. Achtziger, H. Metzner and R. Sieleman, in: Hyperfine Interaction of Defects in Semiconductors, ed. G. Langouche (Elsevier, Amsterdam, 1992).

    Google Scholar 

  33. [33]

    P. Blood and J.W. Orton, The Electrical caracterization of Semiconductors: Majority Carriers and Electron States (Academic Press, London, 1992).

    Google Scholar 

  34. [34]

    E.W. Kucis, Metody Issledovanija Effekta Cholla (Sovjetskoje Radio, Moscow, 1974).

    Google Scholar 

  35. [35]

    M. Wienecke, B. Reinhold, G. Gorbunova and V. Kasiyan, Mater. Sci. Engrg. B 43 (1997) 112.

    Article  Google Scholar 

  36. [36]

    M.M. Henneberg and D.A. Stevenson, Phys. Status Solidi B 48 (1971) 255.

    Google Scholar 

  37. [37]

    D. Shaw, J. Crystal Growth 86 (1988) 778.

    Article  ADS  Google Scholar 

  38. [38]

    M. Wienecke, B. Reinhold, S. Hermann and the ISOLDE Collaboration, J. Crystal Growth 204 (1999) 441.

    Article  ADS  Google Scholar 

  39. [39]

    N. Achtziger, J. Bollmann, Th. Licht, B. Reinhold, U. Reislöhner, J. Röhrich, M. Rüb, M. Wienecke, W. Witthuhn and the ISOLDE Collaboration, Semicond. Sci. Technol. 11 (1996) 947.

    Article  ADS  Google Scholar 

  40. [40]

    M. Wienecke, B. Reinhold, J. Röhrich, J. Bollmann, N. Achtziger, U. Reislöhner, W. Witthuhn and S. Hermann, J. Phys. D: Appl. Phys. 32 (1999) 291.

    Article  ADS  Google Scholar 

  41. [41]

    Landoldt-Börnstein, Gruppe III, Halbleiter, Kristall-und Festkörperphysik, Vol. 17, eds. O. Madelung, M. Schulz and H. Weiss (Springer, Heidelberg/New York, 1982).

    Google Scholar 

  42. [42]

    M. Wienecke, J. Bollmann, J. Röhrich, K. Maass, B. Reinhold and D. Forkel-Wirth, J. Crystal Growth 161 (1996) 82.

    Article  ADS  Google Scholar 

  43. [43]

    B. Reinhold, M. Wienecke, F. Henneberger, A. Burchard and the ISOLDE Collaboration, Phys. Status Solidi B 210 (1998) 459.

    Article  ADS  Google Scholar 

  44. [44]

    J. Bollmann, M. Wienecke, J. Röhrich and H. Kerkow, J. Crystal Growth 159 (1996) 384.

    Article  ADS  Google Scholar 

  45. [45]

    H. Zimmermann, R. Boyn, C. Michel and P. Rudolph, Phys. Status Solidi A 118 (1990) 225.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wienecke, M. Electrical and optical investigation on doping of II–VI compounds using radioactive isotopes. Hyperfine Interactions 129, 401–422 (2000). https://doi.org/10.1023/A:1012645313081

Download citation

Keywords

  • ZnSe
  • ZnTe
  • Optical Investigation
  • Native Defect
  • Perturb Angular Correlation