Skip to main content
Log in

Characterisation of synthetic trioctahedral micas by Mössbauer spectroscopy

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Trioctahedral potassium micas |K}[M3]〈T4〉O10(OH)2 have been synthesized by hydrothermal techniques with various cationic substitutions in the octahedral and the tetrahedral sheet. Taking annite |K}[Fe 2+3 ]〈AlSi3〉O10(OH)2 as the reference mineral, [Fe2] was replaced by [Mg2] and [Ni2], 〈Al3+〉 by 〈Fe3+〉 and finally [Fe2+] + 〈Si4+〉 by [Al3+] + 〈Al3+〉. Mössbauer spectra were evaluated in terms of quadrupole splitting distributions (QSDs) using three generalized sites for 〈Fe3+〉, [Fe3+] and [Fe2]. Annites, nominally free of 〈Fe3+〉, show a lower limit of [Fe3+]/Fe tot of 0.10, which stabilizes the structure. The ferrous iron, [Fe2], QSD consists of two main components. In some of the solid solution series, there is strong experimental evidence for a third ferrous component, particularly at higher [Al3+] contents. This third component is centered at low quadrupole splittings and may be assigned to a defect [Fe2] site, forming 1:2 structures with two neighbouring trivalent octahedral cations. For charge compensation one OH is replaced by O2− for each [M3+] cation. The ferrous QSDs vary systematically with chemical composition. Compared to those of annite, the QSD parameters (mean quadrupole splitting 〈QS〉 and quadrupole splitting with maximum probability, QS peak ) are shifted towards higher values with increasing [Mg2] and [Ni2] contents, and decrease slightly with increasing content of trivalent cations. These trends can be interpreted in terms of changes in the local environment around the Fe probe nucleus, i.e., in terms of decreasing or increasing distortions from the ideal octahedral configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.W. Radoslovich and K. Norrish, Am. Miner. 47 (1962) 599.

    Google Scholar 

  2. R.M. Hazen and C.W. Burnham, Am. Miner. 58 (1973) 889.

    Google Scholar 

  3. G. Donnay, J.D.H. Donnay and H. Takeda, Acta Crystallogr. 17 (1964) 1374.

    Article  Google Scholar 

  4. R.M. Hazen and D.R. Wones, Am. Miner. 57 (1972) 103.

    Google Scholar 

  5. L. Häggström, R. Wäppling and H. Annersten, Chem. Phys. Lett. 4 (1969) 107.

    Article  ADS  Google Scholar 

  6. C.S. Hogg and R.E. Meads, Miner. Mag. 37 (1970) 606.

    Google Scholar 

  7. H. Annersten, S. Devavarayan, L. Häggström and R. Wäppling, Phys. Status Solidi B 48 (1971) K137.

    ADS  Google Scholar 

  8. H. Annersten, Am. Miner. 59 (1974) 143.

    Google Scholar 

  9. M.D. Dyar and R. Burns, Am. Miner. 71 (1986) 955.

    Google Scholar 

  10. M.D. Dyar, Am. Miner. 72 (1987) 102.

    Google Scholar 

  11. D.M. Dyar, Am. Miner. 75 (1990) 656.

    Google Scholar 

  12. C.V. Guidotti and M.D. Dyar, Am. Miner. 76 (1991) 161.

    Google Scholar 

  13. E. Ferrow, Phys. Chem. Miner. 14 (1987) 276.

    Article  ADS  Google Scholar 

  14. E. Ferrow, Phys. Chem. Miner. 14 (1987) 270.

    Article  ADS  Google Scholar 

  15. C. Levillain, P. Maurel and F. Menil, Phys. Chem. Miner. 7 (1981) 71.

    Article  ADS  Google Scholar 

  16. G.J. Redhammer, A. Beran, E. Dachs and G. Amthauer, Phys. Chem. Miner. 20 (1993) 382.

    Article  ADS  Google Scholar 

  17. P.H.J. Mercier, D.G. Rancourt and R.G. Berman, in: Proc. of the ICAME-95 Conf., Vol. 50, Italian Physical Society (1996) p. 789.

    Google Scholar 

  18. G.J. Redhammer, E. Dachs and G. Amthauer, Phys. Chem. Miner. 22 (1995) 282.

    Article  ADS  Google Scholar 

  19. P. Hagraves, D.G. Rancourt and A. Lalonde, Can. J. Phys. 68 (1989) 128.

    ADS  Google Scholar 

  20. D.G. Rancourt, M.-Z. Dang and A.E. Lalonde, Am. Miner. 77 (1992) 34.

    Google Scholar 

  21. D.G. Rancourt, J.Y. Ping and R.G. Berman, Phys. Chem. Miner. 21 (1994) 258.

    Article  ADS  Google Scholar 

  22. D.G. Rancourt, I.A.D. Christie, M. Royer, H. Kodama, J.-L. Robert, A.E. Lalonde and E. Murad, Am. Miner. 79 (1994) 51.

    Google Scholar 

  23. D.G. Rancourt, Phys. Chem. Miner. 21 (1994) 244.

    ADS  Google Scholar 

  24. D.G. Rancourt, Phys. Chem. Miner. 21 (1994) 250.

    ADS  Google Scholar 

  25. D.G. Rancourt and J.Y. Ping, Nucl. Instrum. Methods Phys. Res. B 58 (1991) 85.

    ADS  Google Scholar 

  26. J.Y. Ping, D.G. Rancourt and Z.M. Stadnik, Hyp. Interact. 69 (1991) 493.

    Article  ADS  Google Scholar 

  27. D.G. Rancourt, J.Y. Ping, B. Boukili and J.-L. Robert, Phys. Chem. Miner. 23 (1996) 63.

    Article  ADS  Google Scholar 

  28. D.L. Hamilton and C.M.B. Henderson, Miner. Mag. 35 (1968) 832.

    Google Scholar 

  29. H.P. Eugster and D.R. Wones, J. Petrol. 3 (1962) 82.

    Google Scholar 

  30. W. Lottermoser, P. Kaliba, K. Forcher and G. Amthauer, University of Salzburg, unpublished program (1993).

  31. G.J. Redhammer, Suppl. Issue. Z. Kristallogr. 11 (1996) 51.

    Google Scholar 

  32. G.J. Redhammer, J. Schneider, A. Beran, W. Lottermoser and G. Amthauer, in preparation.

  33. L.P. Aldridge, J. Finch, G.J. Gainsford, K.H. Patterson and W.C. Tennant, Phys. Chem. Miner. 17 (1991) 583.

    Article  ADS  Google Scholar 

  34. R.D. Shannon, Acta Crystallogr. A32 (1976) 751.

    ADS  Google Scholar 

  35. R. Ingalls, Phys. Rev. B 133 (1964) A787.

    Article  ADS  Google Scholar 

  36. E. Dowtey and D.H. Lindsley, Am. Miner. 58 (1973) 850.

    Google Scholar 

  37. D.R. Wones, Am. J. Sci. 261 (1963) 581.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redhammer, G. Characterisation of synthetic trioctahedral micas by Mössbauer spectroscopy. Hyperfine Interactions 117, 85–115 (1998). https://doi.org/10.1023/A:1012639225782

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012639225782

Keywords

Navigation