Skip to main content
Log in

High-Temperature Corrosion Resistance of Al–Re and Re Coatings

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior in air at 1473 K, and sulfidation behavior in a H2S–H2 gas mixture with a sulfur partial pressure of 10−2 Pa at 973 K of Al–Re coated CMSX-4 were studied. Investigation on the sulfidation behavior of the Re-coated CMSX-4 was carried out in a H2S–H2 gas mixture with a sulfur partial pressure of 10−2 Pa at 973 K. The experimental results show that a Re-rich alloy layer was formed between an α-Al2O3 layer and the inner concentration zone of Ta and Ti for the CMSX-4 single crystal alloy with an Al–Re coating after oxidation. The Re-rich alloy layer containing Cr, W, Ni, Co, and Mo effectively inhibited the outward diffusion of alloying elements and the inward diffusion of Al. The Al/Re-coated CMSX-4 single crystal alloy had excellent sulfidation resistance; the Re-rich alloy layer, containing W, Ti, Ta, and Mo, which formed during the sulfidation process and located between the alumina scale and the CMSX-4 base alloy, plays a role in inhibiting the outward diffusion of alloying elements. The sulfidation resistance of CMSX-4 single-crystal alloy is greatly improved by a Re coating on the CMSX-4 alloy surface; this is attributed to a Re–Cr–W alloy layer that retarded the outward diffusion of cations and the oxide layer containing Ta, Ti, and Al, which inhibited the inward penetration of sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Daniel and R. A. Ropp, in Advances in Corrosion Science and Technology, Vol. 5, M. G. Fontana and R. Ataehle, eds. (Plenum Press, New York 1976), p. 55.

    Google Scholar 

  2. H. J. Lim, S. W. Park, and S. G. Kang, Oxid. Met. 48, 391 (1997).

    Google Scholar 

  3. M. J. McNallan, Y. Y. Lee, Y. W. Chang, N. S. Jacobison, and J. Doychak, J. Electrochem. Soc. 138, 3692 (1991).

    Google Scholar 

  4. C. A. Rau, Jr., A. E. Gemma, and G. R. Leverant, Fatigue at Elevated Temperatures, ASTM STP 520 (ASTM, Philadelphia, PA, 1973), p. 166.

    Google Scholar 

  5. F. L. VerSnyder and M. E. Shank, Mater. Sci. Eng. 6, 231 (1970).

    Google Scholar 

  6. T. Narita, T. Ishikawa, and K. Nishida, Oxid. Met. 27, 221 (1987).

    Google Scholar 

  7. T. Narita, T. Ishikawa, and K. Nishida, Oxid. Met. 27, 239 (1987).

    Google Scholar 

  8. D. J. Young, W. W. Smeltzer, and J. S. Kirkaldy, J. Electrochem. Soc. 120, 1221 (1973).

    Google Scholar 

  9. W. Kai and D. L. Douglass, Oxid. Met. 39, 281 (1993).

    Google Scholar 

  10. Y. Niu, F. Gesmundo, and F. Viani, Corros. Sci. 36, 1993 (1994).

    Google Scholar 

  11. M. Schültz, A. Rahmel, and M. Schiitze, Oxid. Met. 49, 33 (1998).

    Google Scholar 

  12. A. I. Rybnikov and L. B. Getsov, Mater. High Temp. 13, 125 (1995).

    Google Scholar 

  13. T. S. Hussey, M. J. Koczak, R. W. Smith, and S. R. Kalidindi, Mater. Sci. Eng. A229, 137 (1997).

    Google Scholar 

  14. E. Lang ed., Coating for High Temperature Applications (Elsevier, New York, 1983), p. 33.

    Google Scholar 

  15. M. W. Cook, P. K. Bossom, Intern. J. Refractory Met. Hard Mater. 18, 147 (2000).

    Google Scholar 

  16. S. Chevalier, P. Dufour, G. Bonnet, and J. C. Colson, Oxid. Met. 50, 271 (1998).

    Google Scholar 

  17. Z. M. Yu, K. Inagawa, and Z. J. Jin, Surf. Coatings Technol. 70, 147 (1994).

    Google Scholar 

  18. C. S. McDowell and S. N. Basu, Oxid. Met. 43, 263 (1995).

    Google Scholar 

  19. Z. M. Yu, K. Inagawa, and Z. J. Jin, Thin Solid Films, 264, 52 (1995).

    Google Scholar 

  20. G. L. Erickson, Superalloys 1996, R. D. Kissinger et al., eds. (TMS, Warrendale, PA, 1996), p. 35.

    Google Scholar 

  21. D. Blavette, P. Caron, and T. Khan, Superalloys 1988, D. N. Duhl et al., eds. (TMS, Warrendale, 1988), p. 305.

    Google Scholar 

  22. R. N. Nabarro, Metall. Mater. Trans. 27A, 513 (1996).

    Google Scholar 

  23. K. Inagawa, K. Watanabe, I. Tanaka, and A. Itoh, J. Nucl. Mater. 128, 925 (1984).

    Google Scholar 

  24. K. L. Mittal (ed.), Adhesion Measurement of Thin Films, Thick Films and Bulk Coatings (ASTM, Philadelphia, PA, 1978).

    Google Scholar 

  25. Z. M. Yu, C. Q. Liu, L. Yu, and Z. J. Jin, J. Adhesion Sci. Technol. 8, 679 (1994).

    Google Scholar 

  26. H. Chu, P. K. Datta, and K. N. Strafford, Oxid. Met. 43, 491 (1995).

    Google Scholar 

  27. J. C. Schaeffer, W. H. Murphy, and J. L. Smialek, Oxid. Met. 43, 1 (1995).

    Google Scholar 

  28. Z. M. Yu, Z. J. Jin, C. Q. Liu, L. Yu, and S. X. Dai, J. Vacuum Sci. Technol. A13, 2303 (1995).

    Google Scholar 

  29. T. Narita, M. Shoji, Y. Hisamatsu, D. Yoshida, M. Fukumoto, and S. Hayashi, in Proceedings of the International Symposium on High-Temperature Corrosion and Protection, T. Narita et al., eds. (Hokkaido, Japan, 2000), p. 351.

  30. C. Fang, H. Yakuwa, M. Miyasaki, and T. Narita, Oxid. Met. 53, 597 (2000).

    Google Scholar 

  31. Z. El Majid and M. Lambertin, Oxid. Met. 27, 333 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Narita, T. High-Temperature Corrosion Resistance of Al–Re and Re Coatings. Oxidation of Metals 56, 467–493 (2001). https://doi.org/10.1023/A:1012593416709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012593416709

Navigation