Skip to main content
Log in

Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The fundamental processes related to the removal of fine particles from surfaces in a hydrodynamic flow field are not adequately understood. A critical particle Reynolds number approach is proposed to assess these mechanisms for fine particles when surface roughness is small compared to particle diameter. At and above the critical particle Reynolds number, particle removal occurs, while below the critical value, particles remain attached to a surface. The system under consideration consists of glass particles adhering to a glass surface in laminar channel flow. Our results indicate rolling is the removal mechanism, which is in agreement with the literature. Theoretical results of the critical particle Reynolds number model for rolling removal are in general agreement with experimental data when particle size distribution, particle and surface roughness, and system Hamaker constant are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali I., R. Sudipto & G. Shinn, 1994. Chemical-mechanical polishing of interlayer dielectric: A review. Solid State Technol. 37, 63.

    Google Scholar 

  • Amick J.A., 1976. Cleanliness and the cleaning of silicon wafers. Solid State Technol. 19, 47.

    Google Scholar 

  • Busnaina A., J. Taylor & I. Kashkoush, 1993. Measurement of the adhesion and removal forces of submicrometer particles on silicon substrates. J. Adhes. Sci. Tehcnol. 7, 441.

    Google Scholar 

  • Cooper K., 2000. A Fundamental and Experimental Study into the Adhesion of Micron-Scale Particles to Thin Films. Ph.D. Thesis, Arizona State University.

  • Cooper K., N. Ohler, A. Gupta & S. Beaudoin, 2000a. Analysis of contact interactions between a rough deformable colloid and a smooth substrate. J. Colloid Interface Sci. 222, 63.

    PubMed  Google Scholar 

  • Cooper K., A. Gupta & S. Beaudoin, 2000b. Substrate morphology and particle adhesion in reacting systems. J. Colloid Interface Sci. 228, 213.

    PubMed  Google Scholar 

  • de Larios J.M., J. Zhang, E. Zhao, T. Gockel & M. Ravkin, 1997. Evaluating chemical mechanical cleaning technology for post-CMP applications. Micro. 15, 61.

    Google Scholar 

  • Fuller K.N.G. & D. Tabor, 1975. The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. Lond. A. 345, 327.

    Google Scholar 

  • Heroux J.B., S. Boughaba & I. Ressejac, 1996. CO2 Laser-assisted removal of submicron particles from solid surfaces. J. Appl. Phys. 79, 2857.

    Google Scholar 

  • Hubbe M., 1984. Theory of detachment of colloidal particles from flat surfaces exposed to flow. Colloid Surf. 12, 151.

    Google Scholar 

  • Hymes D., H. Li, E. Zhao & J. de Larios, 1998. The challenges of the copper CMP clean. Semicond. Int. 21, 117.

    Google Scholar 

  • Johnson K.L. & J.A. Greenwood, 1997. An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326.

    PubMed  Google Scholar 

  • Kern W., 1990. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887.

    Google Scholar 

  • Khilnani A., 1988. Cleaning semiconductor surfaces: Facts and foibles. In: Mittal K. (ed.), Particles on Surfaces I: Detection, Adhesion, and Removal. Plenum Press, p. 17.

  • Krishnan S., A.A. Busnaina, D.S. Rimai & L.P. DeMejo, 1994. The adhesion-induced deformation and the removal of submicrometer particles. J. Adhes. Sci. Technol. 8, 1357.

    Google Scholar 

  • Liu C., B. Dai & C. Yeh, 1996. Post cleaning of chemical mechanical polishing process. Appl. Surf. Sci. 92, 176.

    Google Scholar 

  • Maugis D., 1992. Adhesion of spheres: The JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243.

    Google Scholar 

  • Maugis D. & H.M. Pollock, 1984. Surface forces, deformation, and adherence at metal microcontacts. Acta Metall. 32, 1323.

    Google Scholar 

  • Murkami M., 1997. Post-CMP cleaning: Removing 0.2 µm particles. Semicond. Int. 20, 56.

    Google Scholar 

  • O'Neill M., 1968. A sphere in contact with a plane wall in a slow linear shear flow. Chem. Eng. Sci. 23, 1293.

    Article  Google Scholar 

  • Rimai D.S., L.P. De Mejo & R.P. Bowen, 1990. Surface-forceinduced deformations of monodisperse polystyrene spheres on planar silicon substrates. J. Appl. Phys. 68, 6234.

    Google Scholar 

  • Rimai D.S., L.P. DeMejo, W. Vreeland, S.R. Gaboury & M.W. Urban, 1992. The effect of Young's modulus on the surface-force-induced contact radius of spherical glass particles on polyurethane substrates. J. Appl. Phys. 71, 2253.

    Google Scholar 

  • Rimai D.S., R.S. Moore, R.C. Bowen, V.K. Smith & P.E. Woodgate, 1993. Determination of the dependence of the surface force induced contact radius on particle radius: Cross-linked polystyrene spheres on SiO2/Silicon. J. Mater. Res. 8, 662.

    Google Scholar 

  • Roy S.R., I. Ali, G. Shinn, N. Furusawa, R. Shah, S. Peterman, K. Witt & S. Eastman, 1995. Postchemical-mechanical planarization cleanup process for interlayer dielectric films. J. Electrochem. Soc. 142, 216.

    Google Scholar 

  • Soltani M. & G. Ahmadi, 1994. On particle adhesion and removal mechanisms in turbulent flows. J. Adhes. Sci. Technol. 8, 763.

    Google Scholar 

  • Tabor D., 1977. Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2.

    Google Scholar 

  • Visser J., 1972. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van derWaals constants. Adv. Colloid and Interface Sci. 3, 331.

    Google Scholar 

  • Visser J., 1976. Adhesion of colloidal particles. In: Matijevic E. (ed), Surface and Colloid Science. John Wiley & Sons, Inc., p. 3.

  • Visser J., 1995. Particle adhesion and removal – A review. Part. Sci. Technol. 13, 169.

    Google Scholar 

  • Weiss N.A., 1999. Elementary Statistics, 4th ed., AddisonWesley Longman, Inc.

  • White F.M., 1974. Viscous Fluid Flow, McGraw-Hill, Inc.

  • Yiantsios S.G. & A.J. Karabelas, 1995. Detachment of spherical microparticles adhering on flat surfaces by hydrodynamic forces. J. Colloid Interface Sci. 176, 74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.P. Beaudoin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burdick, G., Berman, N. & Beaudoin, S. Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number. Journal of Nanoparticle Research 3, 453–465 (2001). https://doi.org/10.1023/A:1012593318108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012593318108

Navigation