Skip to main content
Log in

Studies on the Surface Chemistry of Oxide Films Formed on IN-738LC Superalloy at Elevated Temperatures in Dry Air

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of IN-738LC was studied to develop high-temperature materials for low cost and highly efficient turbine systems. The present study was undertaken to investigate the kinetics and the surface chemistry of the oxide films formed during isothermal oxidation of IN-738LC superalloy in the temperature range 1123–1223 K in dry air. The oxidation kinetics followed the parabolic law. The activation energy of oxidation was 264 kJ mol−1. The scaling process is controlled mainly by the diffusion of chromium ions through the intermediate chromia layer in the scale. The surface morphology and the oxide phases of the scale were characterized by SEM, XRD, and EDS studies. XRD analysis revealed the presence of NiO, NiAl2O4, NiCr2O4 spinel, Al2O3, and Cr2O3 on the top-scale surface. The scale surface and cross section were further characterized using X-ray photoelectron spectroscopy (XPS), which revealed the presence of NiO, Ni2O3, NiAl2O4, Al2O3, and TiO2 on the top-oxide surface. The chromia layer was found to be underneath the top scale. The chromia layer also contains NiCr2O4 and NiAl2O4 spinels along with Al2O3. Application of XPS was found to be successful to understand the oxide-scale chemistry in terms of the oxide-growth mechanism of IN-738LC at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Wlodek, Trans. TMS-AIME 230, 177 (1964).

    Google Scholar 

  2. C. S. Giggins and F. S. Pettit, J. Electrochem. Soc. 118, 1782 (1971).

    Google Scholar 

  3. S. K. Rhee and A. R. Spencer, Oxid. Met. 8, 11 (1974).

    Google Scholar 

  4. S. R. Smith, W. J. Cater, G. D. Mateescu, F. J. Kohl, C. Fryburg, and C. A. Stearns, Oxid. Met. 14, 415 (1980).

    Google Scholar 

  5. J. L. Smialek and G. H. Meier, in Superalloys IIHigh Temperature Materials for Aerospace and Industrial Power, C. T. Sims, N. S. Stoloff, and W. C. Hagel, eds. (Wiley-Interscience, New York, 1987), p. 293.

    Google Scholar 

  6. J. Litz, A. Rahmel, M. Schorr, and J. Weiss, Oxid. Met. 32, 167 (1989).

    Google Scholar 

  7. G. Rundell and J. McConnell, Oxid. Met. 36, 253 (1991).

    Google Scholar 

  8. A. L. Marasco and D. J. Young, Oxid. Met. 36, 157 (1991).

    Google Scholar 

  9. P. Y. Hou and J. Stringer, Oxid. Met. 38, 323 (1992).

    Google Scholar 

  10. M. Göbel, A. Rahmel, and M. Schütze, Oxid. Met. 41, 271 (1994).

    Google Scholar 

  11. N. Hussain, K. A. Shahid, I. H. Khan, and S. Rahman, Oxid. Met. 43, 363 (1995).

    Google Scholar 

  12. H. M. Tawancy, N. Sridhar, A. B. Abbas, and D. Rickerby, Scripta Mater. 33, 1431 (1995).

    Google Scholar 

  13. J. H. Chen, P. M. Rogers, and J. A. Little, Oxid. Met. 47, 381 (1997).

    Google Scholar 

  14. T. F. An, H. R. Guan, X. F. Sun, and Z. Q. Hu, Oxid. Met. 54, 301 (2000).

    Google Scholar 

  15. G. R. Wallwork, Rept. Progr. Phys. 39, 401 (1976).

    Google Scholar 

  16. G. L. Erickson, Advan. Mater. Process. 151, 27 (1997).

    Google Scholar 

  17. J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, Q. Zhang, S. Deng, and J. Zu, Oxid. Met. 53, 273 (2000).

    Google Scholar 

  18. M. A. Smith, W. E. Frazier, and B. A. Pregger, Mater. Sci. Eng. A203, 388 (1995).

    Google Scholar 

  19. U. Krupp and H.-J. Christ, Met. Mater. Trans. 31A, 47 (2000).

    Google Scholar 

  20. F. Rabbani, P. Ward, and K. N. Strafford, Oxid. Met. 54, 139 (2000).

    Google Scholar 

  21. P. Kofstad, High Temperature Corrosion (Elsevier, London, 1988), Chapt. 12.

    Google Scholar 

  22. B. Pieraggi, Mater. Sci. Eng. 88, 199 (1987).

    Google Scholar 

  23. S. Esmaeili, C. C. Engler-Pinto, Jr., B. Ilschner, and F. Rézaï-Aria, Scripta Mater. 32, 1777 (1995).

    Google Scholar 

  24. B. D. Prasad, S. N. Sankran, K. E. Wiedermann, and D. E. Glass, Thin Solid Films 345, 255 (1999).

    Google Scholar 

  25. Zs. Tökei, H. Viefhaus, and H. J. Grabke, Appl. Sur. Sci. 165, 23 (2000).

    Google Scholar 

  26. C.-H. Xu, W. Gao, and Y.-D. He, Scripta Mater. 42, 975 (2000).

    Google Scholar 

  27. G. B. Abderrazik, G. Moulin, and A. M. Huntz, Oxid. Met. 33, 191 (1990).

    Google Scholar 

  28. W. W. Lee, D. B. Lee, M. H. Kim, and S. C. Ur, Intermetallics 7, 1361 (1999).

    Google Scholar 

  29. S. Seal, S. K. Bose, and S. K. Roy, Oxid. Met. 41, 139 (1994).

    Google Scholar 

  30. T. L. Barr and S. Seal, J. Vacuum Sci. Technol. A13, 1239 (1995).

    Google Scholar 

  31. P. M. A. Sherwood, in Practical Surface Analysis by Auger and Photoelectron Spectroscopy, D. Briggs and M. P. Seah, eds. (Wiley, London, 1983), p. 445.

    Google Scholar 

  32. L. Kou and J. R. Selman, J. Appl. Electrochem. 30, 1433 (2000).

    Google Scholar 

  33. E. A. Polman, T. Fransen, and P. J. Gellings, Oxid. Met. 33, 135 (1990).

    Google Scholar 

  34. C. S. Tedman, J. Electrochem. Soc. 113, 766 (1966).

    Google Scholar 

  35. V. Kolarik, W. Engel, and N. Eisenrich, Mater. Sci. Forum 133, 563 (1993).

    Google Scholar 

  36. S. Seal, B. Nardelli, A. Kale, and V. Desai, J. Vacuum Sci. Technol. A17, 1109 (1999).

    Google Scholar 

  37. L. Sangaletti, L. E. Depero, B. Allieri, F. Poiselli, E. Comini, G. Sberveglieri, and M. Zocchi, J. Mater. Res. 13, 2457 (1996).

    Google Scholar 

  38. W. S. Epling and G. B. Hoflund, Thin Solid Films 292, 236 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Seal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seal, S., Kuiry, S.C. & Bracho, L.A. Studies on the Surface Chemistry of Oxide Films Formed on IN-738LC Superalloy at Elevated Temperatures in Dry Air. Oxidation of Metals 56, 583–603 (2001). https://doi.org/10.1023/A:1012569803467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012569803467

Navigation