Climatic Change

, Volume 51, Issue 3–4, pp 509–540 | Cite as

Tree Mortality in Gap Models: Application to Climate Change

  • Robert E. Keane
  • Mike Austin
  • Christopher Field
  • Andreas Huth
  • Manfred J. Lexer
  • Debra Peters
  • Allen Solomon
  • Peter Wyckoff


Gap models are perhaps the most widely used class of individual-based tree models used in ecology and climate change research. However, most gap model emphasize, in terms of process detail, computer code, and validation effort, tree growth with little attention to the simulation of plant death or mortality. Mortality algorithms have been mostly limited to general relationships because of sparse data on the causal mechanisms of mortality. If gap models are to be used to explore community dynamics under changing climates, the limitations and shortcomings of these mortality algorithms must be identified and the simulation of mortality must be improved. In this paper, we review the treatment of mortality in gap models, evaluate the relationships used to represent mortality in the current generation of gap models, and then assess the prospects for making improvements, especially for applications involving global climate change. Three needs are identified to improve mortality simulations in gap models: (1) process-based empirical analyses are needed to create more climate-sensitive stochastic mortality functions, (2) fundamental research is required to quantify the biophysical relationships between mortality and plant dynamics, and (3) extensive field data are needed to quantify, parameterize, and validate existing and future gap model mortality functions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J. D., Botkin, D. B., and Melillo, J. M.: 1978, ‘Predicting the Effects of Different Harvesting Regimes on Forest Floor Dynamics in Northern Hardwoods,’, Can. J. Forest Res. 8, 306–315.Google Scholar
  2. Aber, J. D., Melillo, J. M., and Federer, C. A.: 1982, ‘Predicting the Effects of Rotation Length, Harvest Intensity, and Fertilization on Fiber Yield from Northern Hardwood Forests in New England,’, Forest Science 28(1), 31–45.Google Scholar
  3. Aber, J. D., Ollinger, S. V., and Driscoll, C. T.: 1997, ‘Modeling Nitrogen Saturation in Forest Ecosystems in Response to Land Use and Atmospheric Deposition’, Ecol.Modelling 101, 61–78.Google Scholar
  4. Abrams, M. D.: 1994, ‘Genotypic and Phenotypic Variation as Stress Adaptations in Temperate Tree Species: A Review of Several Case Studies, Tree Physiology 14, 833–842.Google Scholar
  5. Albini, F. A. and Reinhardt, E. D.: 1995, ‘Modeling Ignition and Burning Rate of Large Woody Natural Fuels’, International Journal of Wildland Fire 5(2), 81–91.Google Scholar
  6. Baker, W. L.: 1989, ‘Effect of Scale and Spatial Heterogeneity on Fire-Interval Distributions’, Can. J. Forest Res. 19, 700–706.Google Scholar
  7. Baker, W. L., Egbert, S. L., and Frazier. G. F.: 1991, ‘A Spatial Model for Studying the Effects of Climatic Change on the Structure of Landscapes Subject to Large Disturbances’, Ecol.Modelling 56, 109–125.Google Scholar
  8. Battaglia, M. and Sands, P. J.: 1998, ‘Process-Based Forest Productivity Models and their Application to Forest Management’, Forest Ecology and Management 102, 13–32.Google Scholar
  9. Bonan, G. B.: 1989, ‘A Computer Model of the Solar Radiation, Soil Moisture, and Soil Thermal Regimes in Boreal Forests’, Ecol. Modelling 45, 275–306.Google Scholar
  10. Bossel, H.: 1994, TREEDYN3 Forest Simulation Model: Mathematical Model, Program Documentation, and Simulation Results, Berichte des Forschungszentrums, Waldokosysteme, Reihe B, Bd. 35, p. 117.Google Scholar
  11. Bossel, H. and Schäfer. H.: 1989, ‘Generic SimulationModel of Forest Growth, Carbon and Nitrogen Dynamics, and Application to Tropical Acacia and European Spruce, Ecol. Modelling 48, 221–265.Google Scholar
  12. Botkin, D. B. and Schenk, H. J.: 1996, Review and Analysis of JABOWA and Related Forest Models and their Use in Climate Change studies, NCASI Technical Bulletin Number 717, p. 62.Google Scholar
  13. Botkin, Daniel B.: 1993, Forest Dynamics: An Ecological Model, Oxford University Press, New York, p. 309.Google Scholar
  14. Botkin, D. B., Janak, J. F., and Wallis. J. R.: 1972, ‘Some Ecological Consequences of a Computer Model of Forest Growth, J. Ecol. 60, 849–872.Google Scholar
  15. Boyce, R. B.: 1985, Conifer Germination and Seedling Establishment on Burned and Unburned Seedbeds, University of Idaho, Thesis, Moscow, ID, p. 71.Google Scholar
  16. Buchman, R. G.: 1983a, Survival Projections for Major Lake States Tree Species. USDA Forest Service, North Central Experiment Station Research Paper NC-233, p. 7.Google Scholar
  17. Buchman, R. G.: 1983b, ‘A Tree Survival Model with Application to the Great Lakes Region, Can. J. Forest Res. 13(4), 601–608.Google Scholar
  18. Bugmann, H. K. M.: 1996, ‘A Simplified Forest Model to Study Species Composition along Climate Gradients’, Ecology 77(7), 2055–2074.Google Scholar
  19. Bugmann, H. K. M. and Solomon, A. M.: 2000, ‘Explaining Forest Composition and Biomass Across Multiple Biogeographical Regions’, Ecol. Appl. 10, 95–114.Google Scholar
  20. Burton, P. J. and Cumming, S. G.: 1995, ‘Potential Effects of Climatic Change on Some Western Canadian Forests, Based on Phenological Enhancements to a Patch Model of Forest Succession’, Water, Air and Soil Pollut. 82, 401–414.Google Scholar
  21. Busing, R. T. and Clebsch, E. E. C.: 1987, ‘Application of a Spruce-Fir Forest Canopy Gap Model, Forest Ecology and Management 20, 151–169.Google Scholar
  22. Chen, R. and Twilley, R. R.: 1998, ‘A Gap Dynamic Model of Mangrove Forest Development along Gradients of Soil Salinity and Nutrient Resources, J. Ecol. 86, 37–51.Google Scholar
  23. Clinton, B. D., Boring, L. R., and Swank, W. T.: 1993, ‘Canopy Gap Characteristics and Drought Influences in Oak Forests of the Coweeta Basin’, Ecology 74(5), 1551–1558.Google Scholar
  24. Coffin, D. P. and Lauenroth, W. K.: 1990, ‘A Gap Dynamics Simulation Model of Succession in the Shortgrass Steppe’, Ecol. Modelling 49, 229–266.Google Scholar
  25. Coffin, D. P. and Urban, D. L.: 1993, ‘Implications of Natural History Traits to System-Level Dynamics: Comparisons of a Grassland and a Forest’, Ecol. Modelling 67, 147–178.Google Scholar
  26. Crutzen, P. J. and Goldammer, J. G.: 1993, Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires, John Wiley and Sons, New York, p. 456.Google Scholar
  27. Dahlman, R. C.: 1985, ‘Modeling Needs for Predicting Responses to CO2 Enrichment: Plants, Communities, and Ecosystems, Ecol. Modelling 29, 77–106.Google Scholar
  28. Dale, V. H. and Rauscher, H. M.: 1994, ‘Assessing Impacts of Climate Change on Forests: The State of Biological Modeling, Clim. Change 28, 65–90.Google Scholar
  29. Dale, V. H., Doyle, T. W., and Shugart, H. H.: 1985, ‘A Comparison of Tree Growth Models’, Ecol. Modelling 29, 145–169.Google Scholar
  30. Dale, V. H., Hemstrom, M., and Franklin, J.: 1986, ‘Modeling the Long-Term Effects of Disturbances on Forest Succession’, Olympic Peninsula, Washington, Can. J. Forest Res. 16, 56–67.Google Scholar
  31. Daniels, R. F., Leuschner, W. A., Zarnoch, S. J., Burkhart, H. E., Hicks, R. R.: 1979, ‘A Method for Estimating the Probability of Southern Pine Beetle Outbreaks’, Forest Science 2, 265–269.Google Scholar
  32. Desanker, P. V. and Prentice, I. C.: 1994, ‘MIOMBO – a Vegetation Dynamics Model for theMiombo Woodlands of Zambezian Africa, Forest Ecology and Management 69, 87–95.Google Scholar
  33. Deutschman, D. H., Levin, S. A., and Pacala, S.W.: 1999, ‘Error Propagation in a Forest Succession Model: The Role of Fine-Scale Heterogeneity in Light, Ecology 80(6), 1927–1943.Google Scholar
  34. Doyle, T. W.: 1981, ‘The Role of Disturbance in Gap Dynamics of a Montane Rain Forest: An Application of a Tropical Forest Succession Model’, in West, D. C., Shugart, H. H., and Botkin, D. B. (eds.), Forest Succession: Concepts and Application, Springer-Verlag, New York, pp. 56-73.Google Scholar
  35. Finney, M. A.: 1998, FARSITE: Fire Area Simulator – Model Development and Evaluation, USDA Forest Service General Technical Report RMRS-GTR-4, p. 47.Google Scholar
  36. Flannigan, M. D. and van Wagner, C. E.: 1991, ‘Climate Change and Wildfire in Canada’, Can. J. Forest Res. 21, 66–72.Google Scholar
  37. Franklin, J. F., Shugart, H. H., and Harmon, M. E.: 1987, ‘Tree Death as an Ecological Process’, BioScience 37(8), 550–556.Google Scholar
  38. Friend, A. D., Schugart, H. H., Running, S. W.: 1993, ‘A Physiology-Based Gap Model of Forest Dynamics’, Ecology 74(3), 792–797.Google Scholar
  39. Führer, E.: 1993, ‘Bemerkungen zur Epidemiologie rindenbrütender Insekten an Fichte’, FIW Forschungsberichte 1993 5, Österreichische Gesellschaft für Waldökosystemforschung und experimentelle Baumforschung.Google Scholar
  40. Fulton, M. R.: 1991, ‘SimulationModeling of the Effects of Site Conditions and Disturbance History on Boreal Forest Landscape’, Journal of Vegetation Science 2, 603–612.Google Scholar
  41. Gardner, R. H., Hargrove, W. W., Turner, M. G., and Romme, W. H.: 1996, ‘Climate Change, Disturbances and Landscape Dynamics’, in Walker B. H. and Steffen, W. L. (eds.), Global Change and Terrestrial Ecosystems, (IGBP Book Series No. 2, Cambridge University Press, Cambridge, pp. 149–172.Google Scholar
  42. Gertner, G.: 1990, ‘Error Budgets: A Means of Assessing Component Variability and Identifying Efficient Ways to Improve Model Predictive Ability, in Dixon, R. K., Meldahl, R. S., Ruark, G. A., and Warren, W. G. (eds.), Process Modeling of Gorest Growth Response to Environmental Stress Timber Press, Portland, OR, pp. 220–225.Google Scholar
  43. Gill, M.: 1997, ‘Modelling Environmental and Temporal Niches of Eucalypts’, in Williams, J. E. and Woinarski, J. C. Z. (eds.), Eucalyptus Ecology: From Individuals to Ecosystems, Cambridge University Press, London, U.K., pp. 129–150.Google Scholar
  44. Glenn-Lewin, D. C. and van der Maarel, E.: 1992, ‘Patterns and Processes of Vegetation Dynamics’, in Glenn-Lewin, D. C., Peet, R. K., and Veblen, T. T. (eds.), Plant Succession: Theory and Prediction, Chapman and Hill, London, U.K., pp. 11–59.Google Scholar
  45. Hamilton, D. A.: 1986, ‘A Logistic Model of Mortality in Thinned and Unthinned Mixed Conifer Stands of Northern Idaho’, Forest Science 32(4), 989–1001.Google Scholar
  46. Hamilton, D. A.: 1990, ‘Extending the Range of Applicability of an Individual Tree Mortality Model’, Can. J. Forest Res. 20, 1212–1218.Google Scholar
  47. Hanninen, H.: 1995, ‘Effects of Climatic Change on Trees from Cool and Temperate Regions: An Ecophysiological Approach to Modelling of Bud Burst Phenology, Canadian’, Journal of Botany 73, 183–199.Google Scholar
  48. Harcombe, P. A.: 1987, ‘Tree Life Tables’, BioScience 37(8), 557–568.Google Scholar
  49. Hawkes, C.: 2000, ‘Woody Plant Mortality Algorithms: Description, Problems, and Progress’, Ecol. Modelling 126, 225–248.Google Scholar
  50. Hedden, R. L.: 1981, ‘Hazard Rating SystemDevelopment and Validation, An Overview’, in Hedden, R. L., Barras, S. J., Coster, J. E. (eds.), Hazard Rating Systems in Forest Insect Pest Management, Symposium Proceedings, Athens, Georgia, July 31–August 1, 1980. GTR-WO_27, USDA, Forest Service, pp. 9–12.Google Scholar
  51. Host, G. E. and Isebrands, J. G.: 1994, ‘An Interregional Validation of ECOPHYS, a Growth Process Model of Juvenile Popular Clones’, Tree Physiology 14, 933–947.Google Scholar
  52. Hungerford, R. E.: 1990, ‘Modeling the Downward Heat Pulse from Fire in Soils and in Plant Tissue’, in MacIver, D. C., Auld, H., and Whitewood, R. (eds.), Proceedings of the 10th Conference on Fire and Forest Meterology, 1989, April 17–21, Ottawa, Ontario, Forestry Canada, Petawawa National Forestry Institute, Chalk River, Ontario, pp. 148–154.Google Scholar
  53. Huston, M. A.: 1991, ‘Use of Individual-Based Forest Succession Models to Link Physiological Whole-Tree Models to Landscape Scale Ecosystem Models’, Tree Physiology 9, 293–306.Google Scholar
  54. Jorritsma, I. T.M., van Hees, A. F.M., and Mohren, G. M. J.: 1999, ‘Forest Development in Relation to Ungulate Grazing’, Forest Ecology and Mangement 120, 23–34.Google Scholar
  55. Kasischke, E. S., Christensen, J. L., and Stocks, B. J.: 1995, ‘Fire, Global Warming, and the Carbon Balance of Boreal Forests’, Ecol. Appl. 5(2), 437–451.Google Scholar
  56. Kaufmann, M. R.: 1990, ‘Ecophysiological Processes Affecting Tree Growth: Water Relationships’, in Dixon, R. K., Meldahl, R. S., Ruark, G. A., and Warren, W. G. (eds.), Process Modeling of Forest Growth Response to Environmental Stress, Timber Press, Portland, OR, pp. 64–81.Google Scholar
  57. Keane, R. E. and Long, D. G.: 1998, ‘A Comparison of Coarse Scale Fire Effects Simulation Strategies’, Northwest Science 72(2), 76–90.Google Scholar
  58. Keane, R. E., Arno, S. F., and Brown, J. K.: 1990, ‘Simulating Cumulative Fire Effects in Ponderosa Pine/Douglas-Fir Forests’, Ecology 71(1), 189–203.Google Scholar
  59. Keane, R. E., Morgan, P., Running, S. W.: 1996a, Fire-BGC – A Mechanistic Ecological Process Model for Simulating Fire Succession on Coniferous Forest Landscapes of the Northern Rocky Mountains, USDA Forest Service Research Paper INT-484, p. 122.Google Scholar
  60. Keane, R. E., Ryan, K. C., Running, S. W.: 1996b, ‘Simulating Effects of Fire on Northern Rocky Mountain Landscapes with the Ecological Process Model Fire-BGC’, Tree Physiology 16, 319–331.Google Scholar
  61. Kellomäki, S. and Kolström, M.: 1992, ‘Simulation of Tree Species Composition and OrganicMatter Accumulation in Finnish Boreal Forests under Changing Climate Conditions’, Vegetatio 102, 47–68.Google Scholar
  62. Kercher, J. R. and Axelrod, M. C.: 1984a, ‘A Process Model of Fire Ecology and Succession in a Mixed-Conifer Forest’, Ecology, 65(6), 1725–1742.Google Scholar
  63. Kercher, J. R. and Axelrod, M. C.: 1984b, ‘Analysis of SILVA: A Model for Forecasting the Effects of SO2 Pollution and Fire on Western Coniferous Forests’, Ecol. Modelling 23, 165–184.Google Scholar
  64. Kienast, F. and Kräuchi, N.: 1991, ‘Simulated Successional Characteristics of Managed and Unmanaged Low-Elevation Forests in Central Europe’, Forest Ecology and Management 42, 49–61.Google Scholar
  65. Kimmins, J. P.: 1993, Scientific Foundations for the Simulation of Ecosystem Function and Management in FORCYTE-11, Inf. Report NOR-X-328, Forestry Canada, Morthwest Region, Northern Forestry Centre, Edmonton, Alberta, p. 88.Google Scholar
  66. Kimmins, J. P., Mailly, D., and Seely, B.: 1999, ‘Modelling Forest Ecosystem Net Primary Production: The Hybrid Simulation Approach Used in FORECAST’, Ecol. Modelling 122, 195–224.Google Scholar
  67. Kobe, R. K.: 1996, ‘Intraspecific Variation in Sapling Mortality and Growth Predicts Geographic Variation in Forest Composition’, Ecol. Monogr. 66(2), 181–201.Google Scholar
  68. Kobe, R. K. and Coates, D. K.: 1997, ‘Models of Sapling Mortality as a Function of Growth to Characterize Interspecific Variation in Shade Tolerance of Eight Tree Species of Northwestern British Columbia’, Can. J. Forest Res. 27, 227–236.Google Scholar
  69. Kobe, R. K., Pacala, S.W., Silander, J. A., and Canham, C. D.: 1995, ‘Juvenile Tree Survivorship as a Component of Shade Tolerance’, Ecol. Appl. 5(2), 517–532.Google Scholar
  70. Korol, R. L., Running, S. W., Milner, K. S., and Hunt, E. R.: 1991, ‘Testing a Mechanistic Carbon Balance Model against Observed Tree Growth’, Can. J. Forest Res. 21, 1098–1105.Google Scholar
  71. Korol, R. L, Running, S. W., and Milner, K. S.: 1995, ‘Incorporating Intertree Competition into an Ecosystem Model’, Can. J. Forest Res. 25, 413–424.Google Scholar
  72. Korzukhin, M. D., Ter-Mikaelian, M. T., and Wagner, R. G.: 1996, ‘Process versus Empirical Models: Which Approach for Forest Ecosystem Management’, Can. J. Forest Res. 26, 879–887.Google Scholar
  73. Krauchi, N. and Kienast. F.: 1993, ‘Modelling Subalpine Forest Dynamics as Influenced by a Changing Environment’, Water, Air, and Soil Pollut. 68, 185–197.Google Scholar
  74. Landsberg, J. J. and Gower. S. T.: 1997, Applications of Physiological Ecology to Forest Management, Academic Press, San Diego, California, p. 354.Google Scholar
  75. LeBlanc, D. C.: 1990, ‘Red Spruce Decline onWhiteface Mountain, New York. I. Relationships with Elevation, Tree Age, and Competition’, Can. J. Forest Res. 20, 1408–1414.Google Scholar
  76. Lee, Y. J.: 1971, ‘Predicting Mortality for Even-Aged Stands of Lodgepole Pine’, Forestry Chronicle 47, 29–32.Google Scholar
  77. Leemans, R.: 1992, ‘Simulation and Future Projection of Succession in a Swedish Broad-Leaved Forest’, Forest Ecology and Management 48, 305–319.Google Scholar
  78. Leemans, R. and Prentice, I.: 1989, FORSKA, A General Forest Succession Model, General Report 89/2, Institute of Ecological Botany, Uppsala, Sweden, p. 45.Google Scholar
  79. Levine, E. R., Ranson, K. J., Smith, J. A., Williams, D. L., Knox, R. G., Shugart, H. H., Urban, D. L., and Lawrence, W. T.: 1993, ‘Forest Ecosystem Dynamics; Linking Forest Succession, Soil Process and Radiation Models’, Ecol. Modelling 75, 199–219.Google Scholar
  80. Lexer, M. J.: 1998, ‘Model Development for Risk Rating Norway Spruce Stands for Bark Beetle Infestations under Changing Soil Moisture Conditions’, in Peter, D. Maracchi, G., Ghazi, A. (eds.), Climate Change Impact on Agriculture and Forestry, European Commission, EUR 18175.Google Scholar
  81. Lexer, M. J. and Hönninger, K.: 1998, ‘Simulated Effects of Bark Beetle Infestations on Stand Dynamics in Picea Abies Stands: Coupling a Patch Model and a Stand Risk Model’, in Beniston, M., Innes, J. L. (eds.), The Impacts of Climate Variability on Forests. Lecture Notes In Earth Sciences 74, Springer Verlag, p. 329.Google Scholar
  82. Li, C., Ter-Mikaelian, M., and Perera, A.: 1996, ‘Temporal Fire Disturbance Patterns on a Forest Landscape’, Ecol. Modelling 99 (2, 3), 137150.Google Scholar
  83. Lieth, H.: 1974, Phenology and seasonality modeling, Springer-Verlag, New York, U.S.A., p. 444.Google Scholar
  84. Loehle, C.: 1987, ‘Tree Life History Strategies: The Role of Defenses’, Can. J. Forest Res. 18, 209–222.Google Scholar
  85. Loehle, C.: 1996, ‘Forest Responses to Climate Change’, J. For. 72, 13–15.Google Scholar
  86. Loehle, C. and LeBlanc, D.: 1996, ‘Model-Based Assessments of Climate Change Effects on Forests: A Critical Review’, Ecol. Modelling 90, 1–31.Google Scholar
  87. Liu, Z. and Malanson. G. P.: 1992, ‘Long-Term Cyclic Dynamics of Simulated Riparian Forest Stands’, Forest Ecology and Management 48, 217–231.Google Scholar
  88. Makipaa, R. T. Karjalainen, Pussinen, A., and Kellomaki, S.: 1999, ‘Effects of Climate Change and Nitrogen Deposition on the Carbon Sequestration of a Forest Ecosystem in the Boreal Zone’, Can. J. Forest Res. 29, 1490–1501.Google Scholar
  89. Malanson, G. P., Westman, W. E., and Yeuh-lih, Y.: 1992, ‘Realized versus Fundamental Niche Functions in a Model of Chaparral Response to Climate Change’, Ecol. Modelling 64, 261–277.Google Scholar
  90. Manion, P. D.: 1979, ‘StemDecay Perspectives – An Introduction to the Mechanisms of Tree Defense and Decay Patterns’, Phytopathology 69(10), 1136–1138.Google Scholar
  91. Manion, P. D.: 1981, ‘Norway Maple Decline’, Countryside 7(2), 38–42.Google Scholar
  92. McCune, B. and Henckel, L. C.: 1993, ‘Tree Mortality Rates for Two Contrasting Forests in Mammoth Cave National Park’, Natural Areas Journal 13(2), 115–123.Google Scholar
  93. Michaels, P. J. and Hayden, B. P.: 1987, ‘Modeling the Climate Dynamics of Tree Death’, BioScience 37(8), 603–610.Google Scholar
  94. Mielke, D. L., Shugart, H. H., and West, D. C.: 1978, A Stand Model for Upland Forests of Southern Arkansas, Oak Ridge National Laboratory, Environmental Sciences Division, Publication number 1134. ORNL/TM-6225. Oak Ridge, TN, U.S.A., p. 56.Google Scholar
  95. Miller, C. and Urban, D. L.: 1999, ‘A Model of Surface Fire, Climate, and Forest Pattern in the Sierra Nevada, California’, Ecol. Modelling 114, 113–135.Google Scholar
  96. Monserud, R. A.: 1976, ‘Simulation of Forest Tree Mortality’, Forest Science 22(3), 438–444.Google Scholar
  97. Monserud, R. A.: 1975, Methodology for Simulating Wisconsin Northern Hardwood Stand Dynamics, Ph.D. Thesis, Univ. of Wisconsin, MA, U.S.A. p. 156.Google Scholar
  98. Monserud, R. A. and H. Serba. 1999, ‘Modeling individual tree mortality for Austrian tree species’, Forest Ecology and Management 113(2/3):109-123.Google Scholar
  99. Norby, R. J., Ogle, K., Curtis, P. S., Badeck, F.-W., Huth, A., Hurtt, G. C., Kohyama, T., and Peñuelas, J.: 2001, ‘Aboveground Growth and Competition in Forest Gap Models: An Analysis for Studies of Climatic Change’, Clim. Change 51, 415–447.Google Scholar
  100. O'Brien, S. T., Hayden, B. P., and Shugart, H. H.: 1992, ‘Global Change, Hurricanes and a Tropical Rain Forest’, Clim. Change 22, 175–190.Google Scholar
  101. Pacala, S. W., Canham, C. D., and Silander, J. A.: 1993, ‘Forest Models Defined by Feld Masurements: I. The Dsign of a Northeastern Forest Simulator’, Can. J. Forest Res. 23, 1980–1988.Google Scholar
  102. Pacala, S., Canham, C., Saponara, J., Silander, J., Kobe, R., and Ribbens E.: 1996, ‘Forest Models Defined by Field Measurements: II. Estimation, Error Analysis and Dynamics’, Ecol. Monogr. 66, 1–44.Google Scholar
  103. Pacala, S.W. and Hurtt, G. C.: 1993, ‘Terrestrial Vegetation and Climate Change: Integrating Models and Experiments’, in Kareiva, P. M., Kingsolver, J. G., and Huey, R. B. (eds), Biotic Interactions and Global Change, Sinauer Associates Inc. Sunderland, MA, U.S.A., pp.57–74.Google Scholar
  104. Pastor, J. and Post, W. M.: 1986, ‘Influence of Climate, Soil Moisture, and Succession on Forest Carbon and Nitrogen Cycles’, Biogeochemistry 2, 3–27.Google Scholar
  105. Pausas, J. G., Austin, M. P., and Noble, I. R.: 1997, ‘A Forest Simulation Model for Predicting Eucalypt Dynamics and Habitat Quality for Arboreal Marsupials’, Ecol. Appl. 7, 921–933.Google Scholar
  106. Pearlstine, L., McKellar, M., and Kitchens, W.: 1985, ‘Modelling the Impacts of a River Diversion on Bottomland Forest Communities in the Santee River Flood Plain, South Carolina’, Ecol. Modelling 29, 283–302.Google Scholar
  107. Pedersen, B. S.: 1998a, ‘The Role of Stress in the Mortality of Midwestern Oaks as Indicated by Growth Prior to Death’, Ecology 79, 79–93.Google Scholar
  108. Pedersen, B. S.: 1998b, ‘Modeling Tree Mortality in Response to Short-and Long-Term Environmental Stresses’, Ecol. Modelling 105, 347–351.Google Scholar
  109. Peet, R. K. and Christensen, N. L.: 1987, ‘Competition and Tree Death’, BioScience 37(8), 586–595.Google Scholar
  110. Phipps, R. L.: 1979, 'simulation of Wetland Forest Vegetation Dynamics’, Ecol. Modelling 7, 257–288.Google Scholar
  111. Pigott, C. E.: 1981, ‘Nature of Seed Sterility and Natural Regeneration of Tilia cordata Near its Northern Limit in Finland’, Ann. Bot. Fenn. 18, 55–263.Google Scholar
  112. Pigott, C. E.: 1989, ‘Factors Controlling the Distribution of Tilia cordata at the Northern Limits of its Geographical Range. IV. Estimated Ages of the Trees’, New Phytol. 112, 1170–121.Google Scholar
  113. Pigott, C. E. and Huntley, J. P.: 1989, ‘Factors Controlling the Distribution of Tilia cordata at the Northern Limits of its Geographical Range. III. Nature and Causes of Seed Sterility’, New Phytol. 87, 817–839.Google Scholar
  114. Prentice, I. C., Sykes, M. T., Cramer, W.: 1993, ‘A Simulation Model for the Transient Effects of Climate Change on Forest Landscapes’, Ecol. Modelling 65, 51–70.Google Scholar
  115. Price, C. and Rind, D.: 1994, ‘The Impact of a 2 × CO2 Climate on Lighning-Caused Fires’, J. Climate 7, 1484–1494.Google Scholar
  116. Price, D. T., Zimmerman, N. E., van der Meer, P. J., Lexer, M. J., Leadley, P., Jorritsma, I. T. M., Schaber, J., Clark, D. F., Lasch, P., McNulty, S., Wu, J., and Smith, B.: 2001, ‘Regeneration in Gap Models: Priority Issues for Studying Forest Responses to Climate Change’, Clim. Change 51, 475–508.Google Scholar
  117. Reed, K. L. and Clark. S. G.: 1979, SUCcession SIMulator: A Coniferous Forest Simulator. Model Documentation. Bulletin Number 11. Seattle: University of Washington, Coniferous Biome Ecosystem Analysis, p. 96.Google Scholar
  118. Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L., and Hamilton, D. A.: 1999, ‘Genetic Responses to Climate in Pinus contorta: Niche Breadth, Climate Change, and Reforestation’, Ecol. Monogr. 69(3), 375–407.Google Scholar
  119. Reinhardt, E. D., Keane, R. E., and Brown. J. K.: 1997, First Order Fire Effects Model: FOFEM 4.0, User's Guide, USDA Forest Service General Technical Report INT-GTR-344, p. 65.Google Scholar
  120. Roberts, D. W.: 1997, ‘Landscape Vegetation Modelling with Vital Attributes and Fuzzy Systems Theory’, Ecol. Modelling 90, 175–184.Google Scholar
  121. Ryan, K. C.: 1991, ‘Vegetation and Wildland Fire: Implications of Global Climate Change’, Environment International 17, 169–178.Google Scholar
  122. Ryan, K. C.: 1996, Effects of Fire-Caused Defoliation and Basal Girdling on Water Relations and Growth of Ponderosa Pine, Ph.D. Dissertation, University of Montana, Missoula, MT 59812, p. 80.Google Scholar
  123. Ryan, K. C., Peterson, D. L., Reinhardt. E. D.: 1987, ‘Modeling Long-Term Fire-Caused Mortality of Douglas-Ffir’, Forest Science, 34(1), 190–199.Google Scholar
  124. Ryan, K. C. and Reinhardt, E. D.: 1988, ‘Predicting Postfire Mortality of Seven Western Conifers’, Can. J. Forest Res. 18, 1291–1297.Google Scholar
  125. Scarascia-Mugnozza, G. E., Valentini, R., Ceulemans, R., and Isebrands, J. G.: 1994, ‘Ecophysiology and Genetics of Trees and Forests in a Changing Environment’, Special Issue of Tree Physiology 14(7–9), 6590-1008.Google Scholar
  126. Schenk, J. A., Mahoney, R. L., Moore, J. A., and Adams, D. L.: 1980, ‘A Model for Hazard Rating Lodgepole Pine Stands forMortality by Mountain Pine Beetle’, Forest Ecology and Management 3, 57–58.Google Scholar
  127. Schwerdtfeger, F.: 1981, Die Waldkrankheiten, Verlag Paul Parey, Hamburg, Berlin, p. 486.Google Scholar
  128. Shao, G., Schall, P., and Weishampel, J. F.: 1994, ‘Dynamic Simulations of Mixed Broadleaved Pinus koraiensis Forests in the Changbaishan Biosphere Reserve of China’, Forest Ecology and Management 70, 169–181.Google Scholar
  129. Sharpe, P. J. H., Walker, J., Penridge, L. K., Wu, H., Rykiel, E. J.: 1986, ‘Spatial Considerations in Physiological Models of Tree Growth’,, Tree Physiology 2, 403–421.Google Scholar
  130. Shigo, A. L.: 1985, ‘Wounded Forests, Starving Trees’, J. For. 83, 668–673.Google Scholar
  131. Shugart, H. H.: 1998, Terrestrial Ecosystems in Changing Environments, Cambridge University Press, Cambridge, U.K., p. 537.Google Scholar
  132. Shugart, H. H. and Noble, I. R.: 1981, ‘A Computer Model of Succession and Fire Response of the High-Altitude Eucalyptus Forest of the Brindabella Range, Australian Capital Territory, Australian Journal of Ecology 6, 149–164.Google Scholar
  133. Shugart H. H. and Seagle, S. W.: 1985, ‘Modeling Forest Landscapes and the Role of Disturbance in Ecosystems and Communities’, The Ecology of Natural Disturbance and Patch Dynamics, Academic Press, San Diego, CA, pp. 353-368.Google Scholar
  134. Shugart, H. H. and West, D. C.: 1980, ‘Forest Succession Models’, BioScience 30(5), 308–313.Google Scholar
  135. Shugart, H. H. and West, D. C.: 1977, ‘Development of an Appalachian Deciduous Forest Succession Model and its Application to Assessment of the Impact of the Chestnut Blight’, J Environ. Management 5, 161–179.Google Scholar
  136. Sievänen, R. and Burk, T. E.: 1993, ‘Adjusting a Process-Based Growth Model for Varing Site Conditions through Parameter Estimation’, Can. J. Forest Res. 23, 1837–1851.Google Scholar
  137. Siévanen, R. and Burk, T. E.: 1994, ‘Fitting Process-Based Models with Stand Growth Data: Problems and Experiences’, Forest Ecology and Management 69, 145–156.Google Scholar
  138. Sievänen, R., Hari, P., Orava, P. J., and Pelkonen, P.: 1988, ‘A Model for the Effect of Photosynthate Allocation and Soil Nitrogen on Plant Growth’, Ecol. Modelling 41, 55–65.Google Scholar
  139. Smith, T. M., Shugart, H. H., West, D. C.: 1980, ‘FORHAB: A Forest Simulation Model to Predict Habitat Structure for Nongame Bird Species’, The Use of Multivariate Statistics in Studies of Wildlife Habitat – A Workshop, Burlington, VT, pp. 114–123.Google Scholar
  140. Smith, T. M. and Urban. D. L.: 1988, ‘Scale and Resolution of Forest Structural Pattern’, Vegetatio 74, 143–150.Google Scholar
  141. Solomon, A. M.: 1986, ‘Transient Responses of Foreste to CO2-Induced Climate Change: Simulation Experiments in Eastern North America’, Oecologia 68, 567–579.Google Scholar
  142. Solomon, A. M. and Shugart, H. H. Jr.: 1984, ‘Integrating Forest Stand Simulations with Paleoecological Records to Examin Long-Term Forest Dynamics’, in Agren, G. I. (ed.), in State and Change of Forest Ecosystems, Swedish Univ. Agr. Sci., Uppsala, Sweden, pp. 333-356.Google Scholar
  143. Stage, A. R. and Hamilton, D. A.: 1981, ‘Sampling and Analytical Methods for Developing Risk-Rating Systems for Forest Pests’, in Hedden, R. L., Barras, S. J., and Coster, J. E. (eds.), Hazard Rating Systems in Forest Insect Pest Management, Symposium Proceedings, Athens, Georgia, July 31–August 1, 1980. GTR-WO-27, USDA, Forest Service, pp. 87–92.Google Scholar
  144. Stoszek, K. J., Mika, P., Moore, J. A., and Osborne, H. L.: 1981, ‘Relationships of Douglas-Fir Tussock Moth Defoliation to Site and Stand Characteristics in Northern Idaho’, Forest Science 27, 431–442.Google Scholar
  145. Turner, M. G., Gardner, R. H., and O'Neill, R. V.: 1995, ‘Ecological Dynamics at Broad Scales’, BioScience Supplement: Science and Biodiversity Policy, S: 29–34.Google Scholar
  146. Torn, M. S. and Fried. J. S.: 1992, ‘Predicting the Impacts of Global Warming on Wildland Fire’, Clim. Change 21, 257–274.Google Scholar
  147. Urban, D. L., Bonan, G. B., Smith, T. M., Shugart, H. H.: 1991, ‘Spatial Applications of GAP Models’, Forest Ecology and Management, 42, 95–110.Google Scholar
  148. Urban, D. L. and Shugart, H. H.: 1992, ‘Individual-Based Models of Forest Succession’, in Glenn-Lewin, D. C., Peet, R, K., and Veblen, T. T. (eds.), Plant Succession Theory and Prediction, Chapman and Hall, London, pp. 249–292.Google Scholar
  149. Van der Voet, H. and Mohren, G.M. J.: 1994, ‘An Uncertainty Analysis of the Process-Based Growth Model FORGRO’, Forest Ecology and Management 69, 157–166.Google Scholar
  150. Vose, J.M. and Swank, W. T.: 1990, ‘A Conceptual Model of Forest Growth Emphasizing Stand Leaf Area’, in Dixon, R. K., Meldahl, R. S., Ruark, G. A., and Warren W. G. (eds.), Process Modeling of Gorest Growth Response to Environmental Stress, Timber Press, Portland, OR, pp. 278–288.Google Scholar
  151. Wagner, M. R.: 1990, ‘Individual Tree Physiological Responses to Global Climate Scenarios: A Conceptual Model of Effects on Forest Insect Outbreaks’, Proceedings of the 1990 Society of American Foresters National Convention, Society of American Foresters, Bethesda, Maryland, pp. 148–153.Google Scholar
  152. Waldrop, T. A., Buckner, E. R., Shugart, H. H., and McGee, C. E.: 1986, ‘FORCAT: A Single Tree Model of Stand Development Following Clearcutting on the Cumberland Plateau’, Forest Science 32(2), 297–317.Google Scholar
  153. Waring, R. H.: 1983, ‘Estimation of Forest Growth and Efficiency in Relation to Canopy Leaf Area’, Adv. Ecol. Res. 32(2), 327–354.Google Scholar
  154. Waring, R. H.: 1987, ‘Characteristics of Trees Predisposed to Die’, BioScience 37(8), 569–577.Google Scholar
  155. Waring, R. H. and Pitman, G. B.: 1980, A Simple Model of Host Resistance to Bark Beetles, Oregon State University Research Note 65.Google Scholar
  156. Waring R. H. and Running, S. W.: 1998, Forest Ecosystems: Analysis at Multiple Scales, Academic Press, San Diego, CA. p. 370.Google Scholar
  157. Weinstein, D. A., Shugart, H. H., and West, D. C.: 1982, The Long-Term Nutrient Retention Properties of Forest Ecosystems: A Simulation Investigation, Oak Ridge National Laboratory Environmental Sciences Division Publication Number 2039. ORNL/TM-8472. Oak Ridge TN 37830, p. 145.Google Scholar
  158. Williams, M.: 1996, ‘A Three-Dimensional Model of Forest Development and Competition’, Ecol. Modelling 89, 73–98.Google Scholar
  159. Wotton, B. M. and Flannigan, M. D.: 1993, ‘Length of Fire Season in Changing Climate’, The Forestry Chronicle 69(2), 187–193.Google Scholar
  160. Wyckoff, P. H. and Clark, J. S.: 2000, ‘Predicting Tree Mortality from Diameter Growth: A Comparison of Approaches’, Can. J. Forest Res. 30, 156–167.Google Scholar
  161. Yaussy, D. A.: 2000, ‘Comparison of an Empirical Forest Growth and Yield Simulator and a Forest Gap Simulator Using Actual 30-year Growth from Two Even-Aged Forests in Kentucky’, Forest Ecology and Management 126, 385–398.Google Scholar
  162. Zhang, Y., Reed, D. D., Cattelino, P. J., Gale, M. R., Jones, E. A., Liechty, H. O., Mroz, G. D.: 1994, ‘A Process-Based Growth Model for Young Red Pine’, Ecology and Management 69, 21–40.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Robert E. Keane
    • 1
  • Mike Austin
    • 2
  • Christopher Field
    • 3
  • Andreas Huth
    • 4
  • Manfred J. Lexer
    • 5
  • Debra Peters
    • 6
  • Allen Solomon
    • 7
  • Peter Wyckoff
    • 8
  1. 1.USDA Forest Service, Rocky Mountain Research StationFire Sciences LaboratoryMissoulaUSA
  2. 2.Division of Wildlife and EcologyCSIROCanberraAustralia
  3. 3.Department of Plant BiologyCarnegie Institution of WashingtonStanfordUSA
  4. 4.Center for Environmental Systems ResearchUniversity of KasselKasselGermany
  5. 5.Institute of SilvicultureUniversity of Agricultural SciencesViennaAustria
  6. 6.USDA-ARS, Jornada Experimental Range MSC 3JERNMSULas CrucesUSA
  7. 7.Western Ecology DivisionU.S. Environmental Protection AgencyCorvallisUSA
  8. 8.Botany DepartmentDuke UniversityDurhamUSA

Personalised recommendations