Skip to main content
Log in

A Monte Carlo Simulation of the H+ Polar Wind: Effect of Velocity Distributions with Kappa Suprathermal Tails

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A Monte Carlo simulation is used to study the effects of Kappa H+distributions in the polar wind. We consider the gravity, the polarization electric field, the divergence of geomagnetic field lines and Coulomb collisions of H+ in a background of O+ ions. The aim is to study the consequences of a velocity distribution function with an enhanced high energy tail instead of a Maxwellian distribution as assumed in earlier Monte Carlo simulations. The transformation of the velocity distribution function of H+ ions as a function of the altitude is presented. Effects resulting from the acceleration of the particles by the polarization electric field and from Coulomb collisions depend on the energy of the particles. Coulomb collisions mainly affect low energy particles while high energy particles are more efficiently accelerated by the upward directed ambipolar electric field. The combination of both effects results in double-hump velocity distribution functions developing in the transition region. We study consequences of suprathermal tails distributions on the shape of the double-hump and on the moments of the velocity distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks, P.M. and Holzer, T.E.: 1968, The polar wind, J. Geophys. Res. 73, 6846.

    ADS  Google Scholar 

  • Barakat, A.R., Barghouthi, I.A. and Schunk, R.W.: 1995, Double-hump H+ velocity distributions in the polar wind, Geophys. Res. Lett. 22, 1857.

    Article  ADS  Google Scholar 

  • Barakat, A.R. and Lemaire, J.: 1990, Monte Carlo study of the escape of a minor species, Phys. Rev. A 42 (6), 3291.

    Article  ADS  Google Scholar 

  • Barakat, A.R. and Schunk, R.W.: 1983, O+ ions in the polar wind, J. Geophys. Res. 88, 7887.

    ADS  Google Scholar 

  • Barghouthi, I.A., Barakat, A.R., Schunk, R.W. and Lemaire, J.: 1990, H+ outflow in the polar wind: A Monte Carlo simulation, Eos Trans. AGU 71, 1493.

    Google Scholar 

  • Barghouthi, I.A., Barakat, A.R. and Schunk, R.W.: 1993, Monte Carlo study of the transition region in the polar wind: an improved collision model, J. Geophys. Res. 98, 17583.

    ADS  Google Scholar 

  • Christon, S.P., Mitchely, D.G., Williams, D.J., Frank, L.A., Huang, C.Y. and Eastman, T.E.: 1988, Energy Spectra of Plasma Sheet Ions and Electrons from ~ 50 eV/e to ~ 1 MeV During Plasma Temperature Transitions, J. Geophys. Res. 93, 2562-2572.

    ADS  Google Scholar 

  • Demars, H.G. and Schunk, R.W.: 1987, Comparison of solutions to bi-Maxwellian and Maxwellian transport equations for subsonic flows, J. Geophys. Res. 92, 5969.

    Article  ADS  Google Scholar 

  • Ganguli, S.B.: 1996, The polar wind, Rev. Geophys. 34 (3), 311.

    Article  ADS  Google Scholar 

  • Lemaire, J. and Scherer, M.: 1972, Kinetic models of the solar and polar winds, Rev. Geophys. 11, 427.

    ADS  Google Scholar 

  • Lie-Svendsen, O. and Rees, M.H.: 1996, An improved kinetic model for the polar outflow of a minor ion, J. Geophys. Res. 101, 2415.

    Article  ADS  Google Scholar 

  • Maksimovic, M., Pierrard, V. and Riley, P.: 1997, Ulysses electron distributions fitted with Kappa functions, Geophys. Res. Lett. 24 (9), 1151.

    Article  ADS  Google Scholar 

  • Moore, T.E., Chappell, C.R., Chandler, M.O., Craven, P.D., Giles, B.L., Pollock, C.J., Burch, J.L., Young, D.T., Waite Jr., J.H., Nordholt, J.E., Thomsen, M.F., McComas, D.J., Berthelier, J.J., Williamson, W.S., Robson, R. and Mozer, F.S.: 1997, High-altitude observations of the polar wind, Science 277, 349.

    Article  ADS  Google Scholar 

  • Pierrard, V.: 1997, Fonctions de distribution des vitesses des particules s'échappant de l'ionosphère, PhD thesis, Université Catholique de Louvain, 171 pp.

  • Pierrard, V. and Lemaire, J.: 1996, Lorentzian ion exosphere model, J. Geophys. Res. 101, 7923.

    Article  ADS  Google Scholar 

  • Pierrard, V. and Lemaire, J.: 1998, A collisional kinetic model of the polar wind, J. Geophys. Res. 103, 11701.

    Article  ADS  Google Scholar 

  • Scudder, J.D.: 1992, On the causes of temperature change in inhomogeneous low-density astrophysical plasmas, Astrophys. J. 398, 299.

    Article  ADS  Google Scholar 

  • Wilson, G.R.: 1992, Semi-kinetic modeling of the outflow of ionospheric plasma through transition region, J. Geophys. Res. 97 (10), 551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barghouthi, I., Pierrard, V., Barakat, A. et al. A Monte Carlo Simulation of the H+ Polar Wind: Effect of Velocity Distributions with Kappa Suprathermal Tails. Astrophysics and Space Science 277, 427–436 (2001). https://doi.org/10.1023/A:1012536114212

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012536114212

Keywords

Navigation