Skip to main content
Log in

The Electronic Structure of Mixed Metcars Ti7MC12 (M = Y, Zr, Nb,..., Ag)

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The electronic structures of a series of mixed metallocarbohedrenes (metcars) Ti7MC12formed as a result of replacement of the titanium atom in the Ti8C12metcar by 4dtransition metal ions (M = Y, Zr, Nb, ..., Ag) are established using the ab initioelectron density functional method in the discrete-variational scheme. The dependences of electronic structure, charge distributions, and chemical bonds in the Ti7MC12metcars on the cluster symmetry (T hor T d) and position of the 4datom in a molecular cage are discussed. The electronic states of 4datoms in molecular titanium carbide (Ti8C12metcar) are compared with those in crystal titanium carbide (cubic TiC phase with rock salt structure). The effect of doping of the Ti8C12metcar with 4datoms on its reactivity is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Guo, B.C., Kerns, R.P., and Castleman, A.W., Science, 1992, vol. 255, p. 1411.

    Google Scholar 

  2. Guo, B.C., Wei, S., Purnell, J., et al., Science, 1992, vol. 256, p. 516.

    Google Scholar 

  3. Wei, S., Guo, B.C., Purnell, J., et al., J. Phys. Chem., 1992, vol. 96, p. 4166.

    Google Scholar 

  4. Pradeep, T. and Manoharan, P.T., Curr. Sci., 1995, vol. 68, p. 1017.

    Google Scholar 

  5. Deng, H.T., Kern, K.P., and Castleman, A.W., J. Am. Chem. Soc., 1996, vol. 118, p. 446.

    Google Scholar 

  6. Cartier, S.F., May, B.D., and Castleman, A.W., J. Phys. Chem., 1996, vol. 100, p. 8175.

    Google Scholar 

  7. Castleman, A.W. and Bowen, K.H., J. Phys. Chem., 1996, vol. 100, p. 12911.

  8. Selvan, R. and Pradeep, T., Curr. Sci., 1998, vol. 74, p. 666.

    Google Scholar 

  9. King, R.B., Inorg. Chem., 2000, vol. 39, p. 2906.

    Google Scholar 

  10. Rohmer, M.M., Benard, M., and Poblet, J.M., Chem. Rev., 2000, vol. 100, p. 495.

    Google Scholar 

  11. Cartier, S.F., May, B.D., and Castleman, A.W., J. Chem. Phys., 1994, vol. 100, p. 5384.

  12. Deng, H.T., Guo, B.C., Kerns, P.S., and Castleman, A.W., Int. J. Mass Spectrom. Ion Processes, 1994, vol. 138, p. 275.

    Google Scholar 

  13. Deng, H.T., Guo, B.C., Kerns, K.P., and Castleman, A.W., J. Phys. Chem., 1994, vol. 98, p. 1373.

    Google Scholar 

  14. Cartier, S.F., May, B.D., and Castleman, A.W., J. Chem. Phys., 1996, vol. 104, p. 3423.

    Google Scholar 

  15. May, B.D., Kooi, S.E., Toleno, D.J., and Castleman, A.W., J. Chem. Phys., 1997, vol. 106, p. 2231.

    Google Scholar 

  16. Kooi, S.E. and Castleman, A.W., J. Chem. Phys., 1998, vol. 108, p. 8864.

    Google Scholar 

  17. Sakurai, H., Kooi, S.E., and Castleman, A.W., J. Clust. Sci., 1999, vol. 10, p. 493.

    Google Scholar 

  18. Selvan, R. and Pradeep, T., Chem. Phys. Lett., 1999, vol. 309, p. 149.

    Google Scholar 

  19. Dance, I., J. Chem. Soc., Chem. Commun., 1992, p. 1779.

  20. Baerends, T.J., Ellis, D.E., and Ros, P.P., Chem. Phys., 1973, vol. 5, p. 41.

    Google Scholar 

  21. Press, M.R. and Ellis, D.E., Phys. Rev. B: Solid State, 1976, vol. 13, p. 4438.

    Google Scholar 

  22. Gunnarsson, O., Lundqvist, B.I., and Ros, P., Phys. Rev. B: Solid State, 1976, vol. 13, no. 10, p. 4274.

    Google Scholar 

  23. Dance, I., J. Am. Chem. Soc., 1996, vol. 118, p. 2699.

    Google Scholar 

  24. Wang, L.-S., Li, S., and Wu, H., J. Phys. Chem., 1996, vol. 100, p. 19212.

    Google Scholar 

  25. Li, S., Wu, H., and Wang, L.-S., J. Am. Chem. Soc., 1997, vol. 119, p. 7417.

    Google Scholar 

  26. Sofronov, A.A., Makurin, Yu.N., Ryzhkov, M.V., and Ivanovskii, A.L., Koord. Khim., 1999, vol. 25, no. 8, p. 597.

    Google Scholar 

  27. Ivanovsky, A.L., Anisimov, V.I., and Gubanov, V.A., J. Phys. Chem. Solids, 1989, vol. 50, p. 883.

    Google Scholar 

  28. Ivanovskii, A.L. and Gubanov, V.A., Metallofizika, 1990, vol. 12, p. 18.

    Google Scholar 

  29. Ivanovsky, A.L. and Shveikin, G.P., Phys. Status Solidi B, 1994, vol. 181, p. 251.

    Google Scholar 

  30. Makurin, Yu.N., Sofronov, A.A., and Ivanovskii, A.L., Dokl. Akad. Nauk, 2000, vol. 327, p. 340.

    Google Scholar 

  31. Makurin, Yu.N., Sofronov, A.A., Gusev, A.I., and Ivanovsky, A.L., Chem. Phys., 2001, vol. 270, p. 293.

    Google Scholar 

  32. Goldschmidt, H.J., Interstitial Alloys, London: Butterworths, 1967. Translated under the title Splavy vnedreniya, Moscow: Mir, 1971, vol. 1.

    Google Scholar 

  33. Ivanovskii, A.L., Gubanov, V.A., Kurmaev, E.Z., and Shveikin, G.P., Usp. Khim., 1983, vol. 52, p. 705.

    Google Scholar 

  34. Ivanovskii, A.L., Zhukov, V.P., and Gubanov, V.A., Elektronnoe stroenie karbidov i nitridov perekhodnykh metallov (Electronic Structure of Carbides and Nitrides of Transition Metals), Moscow: Nauka, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sofronov, A.A., Ivanovskaya, V.V., Makurin, Y.N. et al. The Electronic Structure of Mixed Metcars Ti7MC12 (M = Y, Zr, Nb,..., Ag). Russian Journal of Coordination Chemistry 27, 808–818 (2001). https://doi.org/10.1023/A:1012523207522

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012523207522

Keywords

Navigation