Journal of Protein Chemistry

, Volume 20, Issue 6, pp 507–519 | Cite as

Characterization and Use of Green Fluorescent Proteins from Renilla mulleri and Ptilosarcus guernyi for the Human Cell Display of Functional Peptides

  • Beau Peelle
  • Tarikere L. Gururaja
  • Donald G. Payan
  • D. C. Anderson

Abstract

Green fluorescent protein (GFP) is useful as an intracellular scaffold for the display of random peptide libraries in yeast. GFPs with a different sequence from Aequorea victoria have recently been identified from Renilla mulleri and Ptilosarcus gurneyi. To examine these proteins as intracellular scaffolds for peptide display in human cells, we have determined the expression level of retrovirally delivered human codon-optimized versions in Jurkat-E acute lymphoblastic leukemia cells using fluorescence activated cell sorting and Western blots. Each wild type protein is expressed at 40% higher levels than A. victoria mutants optimized for maximum fluorescence. We have compared the secondary structure and stability of these GFPs with A. victoria GFP using circular dichroism (CD). All three GFPs essentially showed a perfect β-strand conformation and their melting temperatures (Tm) are very similar, giving an experimental evidence of a similar overall structure. Folded Renilla GFP allows display of an influenza hemagglutinin epitope tag in several internal insertion sites, including one which is not permissive for such display in Aequorea GFP, giving greater flexibility in peptide display options. To test display of a functional peptide, we show that the SV-40 derived nuclear localization sequence PPKKKRKV, when inserted into two different potential loops, results in the complete localization of Renilla GFP to the nucleus of human A549 cells.

Green fluorescent proteins retroviral delivery peptide libraries fluorescence circular dichroism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abedi, M. R., Caponigro, G., and Kamb, A. (1998). Nucleic Acids Res. 26, 623–630.Google Scholar
  2. Bohm, G., Muhr, R., and Jaenicke, R. (1992). Protein Eng. 5, 191–195.Google Scholar
  3. Colas, P., Cohen, B., Jessen, T., Grishina, I., McCoy, J., and Brent, R. (1996). Nature 380, 548–550.Google Scholar
  4. Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996). Gene 173, 33–38.Google Scholar
  5. Caponigro, G., Abedi, M. R., Hurlburt, A. P., Maxfield, A., Judd, W., and Kamb. (1998). Proc.Natl.Acad.Sci. 95, 7508–7513.Google Scholar
  6. Cubitt, A., Heim, R., Adams, S., Boyd, A., Gross, L., and Tsien, R. (1995). Trends Biochem.Sci. 20, 448–455.Google Scholar
  7. Geyer, C., Colman-Lerner, A., and Brent, R. (1999). Proc.Natl.Acad. Sci.USA 96, 8567–8572.Google Scholar
  8. Greenfield, N. and Fasman, G. D. (1969). Biochemistry 8, 4108–4116.Google Scholar
  9. Gururaja, T. L., Narasimhamurthy, S., Payan, D., and Anderson, D. C. (2000). Chem.Biol. 7, 515–527.Google Scholar
  10. Kozak, M. (1986). Cell 44, 283–292.Google Scholar
  11. Lorens, J., Bennett, M., Pearsall, D., Throndset, W., Rossi, A., Armstrong, R., Fox, B., Chan, E., Luo, Y., Masuda, E., Ferrick, D., Anderson, D., Payan D., and Nolan, G. (2000). Mol Ther. 1, 438–447.Google Scholar
  12. Lorenz, W., McCann, R., Longiaru, M., and Cormier, M. (1991). Proc. Natl.Acad.Sci.USA 88, 4438–4442.Google Scholar
  13. Lowry, O., Rosenbrough, N., Farr, A., and Randall, R. (1951). J.Biol. Chem. 193, 265–275.Google Scholar
  14. Matz, M., Fradkov, A., Labas, Y., Savitsky, A., Zaraisky, A., Markelov, M., and Lukyanov, S. (1999). Nature Biotechnol. 17, 969–973.Google Scholar
  15. Moroianu, J., Blobel, G., and Radu, A. (1995). Proc.Natl.Acad.Sci. USA 92, 2008–2011.Google Scholar
  16. Norman, T., Smith, D., Sorger, P., Drees, B., O'Rourke, S., Hughes, T., Roberts, C., Friend, S., Fields, S., and Murray, A. (1999). Science 285, 591–595.Google Scholar
  17. Ormo, M., Cubitt, A., Kallio, K., Gross, L., Tsien, R., and Remington, S. (1996). Science 273, 1392–1395.Google Scholar
  18. Pearson, W. and Lipman, D. (1988). Proc.Natl.Acad.Sci.USA 85, 2444–2448.Google Scholar
  19. Peelle, B., Lorens, J., Li, W., Bogenberger, J., Payan, D., and Anderson, D. C. (2001). Chem.Biol. 8, 521–534.Google Scholar
  20. Radu, A., Blobel, G., and Moore, M. S. (1995). Proc.Natl.Acad.Sci. USA 92, 1769–1773.Google Scholar
  21. Rexach, M. and Blobel, G. (1995). Cell 83, 683–692.Google Scholar
  22. Sauder, J., Arthur, J., and Dunbrack, R. (2000). Proteins 40, 6–22.Google Scholar
  23. Swift, S., Lorens, J., Achacoso, P., and Nolan, G. (1999). In Current protocols in immunology (Coligan, J., Kruisbeek, A., Margulies, D., Shevach, E. and Strober, W., Eds.), Vol. 10.17C, Wiley and Sons, New York, pp. 1–17.Google Scholar
  24. Szent-Gyorgyi, C. and Bryan, B. (1999). Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics, high throughput screening and novelty items. World patent application WO9949019.Google Scholar
  25. Szent-Gyorgyi, C., Ballou, B., Dagnal, E., and Bryan, B. (1999). In Biomedical imaging: Reporters, dyes and instrumentation (Bornhop, D, Contag, C. and Sevick-Muraca, E., Eds.), SPIE, Bellingham, Washington, pp. 4–11.Google Scholar
  26. Thompson, J., Higgins, D., and Gibson, T. (1994). Nucleic Acids Res. 22, 4673–4680.Google Scholar
  27. Topell, S., Hennecke, J., and Glockshuber, R. (1999). FEBS Lett. 457, 283–289.Google Scholar
  28. Tsien, R. (1998). Ann.Rev.Biochem. 67, 509–544.Google Scholar
  29. Ward, W. and Cormier, M. (1979). J.Biol.Chem. 254, 781–788.Google Scholar
  30. Ward, W., Cody, D., Hart, R., and Cormier, M. (1980). Photochem. Photobiol. 31, 611–615.Google Scholar
  31. Woody, R. W. and Dunker, A. K. (1996) In Circular dichroism and the conformational analysis of biomolecules (Fasman, G. D., Ed.), Plenum, New York, pp. 109–157.Google Scholar
  32. Yang, F., Moss, L., and Phillips, G. (1996). Nature Biotechnol. 14, 1246–1251.Google Scholar
  33. Yang, T., Cheng, L., and Kain, S. (1996). Nucleic Acids Res. 24, 4592–4593.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Beau Peelle
    • 1
  • Tarikere L. Gururaja
    • 1
  • Donald G. Payan
    • 1
  • D. C. Anderson
    • 1
  1. 1.Protein Chemistry DepartmentRigel Pharmaceuticals, Inc.S. San Francisco

Personalised recommendations