Skip to main content
Log in

Spectroscopic Study of the Growth Mechanism of Silver Microclusters

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polymer-protected silver microclusters have been obtained by room-temperature alcoholic reduction of metal ions in presence of a polymeric stabilizer (i.e., poly(N-vinyl-2-pyrrolidone) (PVP)). The method allows one to prepare bulk quantities of the material with a control of size from a molecular level. Spectrophotometric monitoring technique has been employed to investigate the influence of the aging of the protective PVP layer on the microcluster growth rate, under different reaction temperatures and PVP/ethylene glycol weight ratios. The aging time of the polymeric stabilizer solution has been found to play a fundamental role in the reproducibility of the microcluster growth kinetic. In addition, the microcluster growth process has resulted governed by a diffusion-controlled mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carotenuto G., 2001a. Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Appl. Organomet. Chem. 15, 344–351.

    Google Scholar 

  • Carotenuto G., G. Marletta & L. Nicolais, 2001b. Dependance of the order–disorder transistion temperature of 1-octadecanethiol/silver system on the substrate size. J. Mater. Sci. Lett. 20, 663–665.

    Google Scholar 

  • Carotenuto G., G.P. Pepe & L. Nicolais, 2000a. Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur. Phys. J. B16, 11–17.

    Google Scholar 

  • Carotenuto G., G.P. Pepe, L. Parlato & L. Nicolais, 2000b. Study of the nano-sized metallic clusters dispersed into a polymeric matrix. Mater. Eng. 11, 261–267.

    Google Scholar 

  • Dirix Y., C. Bastiaansen, W. Caseri & P. Smith, 1999. Preparation, structure and properties of uniaxially oriented polyethylenesilver nanocomposites. J. Mater. Sci. 34, 3859–3866.

    Google Scholar 

  • Fritsch D. & K.-V. Peinemann, 1995. Catalysis with homogenous membranes loaded with nanoscale metallic clusters and their preparation. Catalysis Today 25, 277–283.

    Google Scholar 

  • Khanna S.N., 1997. In: Goldstein A.N. ed. Handbook of Nanophase Materials, Marcel Dekker. Inc., New York, p. 1.

    Google Scholar 

  • Kreibig U. & C.V. Fragstein, 1969. The limitation of electron mean free path in small silver particles. Z. Physik 224, 307–323.

    Google Scholar 

  • Kreibig U. & M. Vollmer, 1995. In: Toennies J.P. ed. Optical Properties of Metal Microclusters, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • LaMer V.K. & R.H. Dinegar, 1950. Theory, production and mechanism of formation of monodispersed hydrosols. J. Amer. Chem. Soc. 72, 4847–4854.

    Google Scholar 

  • Mie G., 1908. Contributions to the optics of turbid media, particularly solutions of colloidal metals. Ann. D. Physik. 25, 377–413.

    Google Scholar 

  • Sugano S. & H. Koizumi, 1998. In: Toennies J.P. ed. Microcluster Physics, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Sugimoto T., 1987. Preparation of Monodispersed colloidal particles. Adv. in Colloid and Interf. Sci. 28, 65–108.

    Google Scholar 

  • Texter J. & M. Lelental, 1999. Dielectric spectroscopy if nanoparticulate semiconductors in thin films. J. Mater. Sci. 18, 775–778.

    Google Scholar 

  • Tröger L., H. Hünnefeld, S. Nunes, M. Oehring & D. Fritsch, 1997. Structural characterization of catalitically active metal clusters in polymer membranes. Z. Phys. D 40, 81–83.

    Google Scholar 

  • Weibel M., W. Caseri, U.W. Suter, H. Kiess & E. Wehrli, 1991. Preparation of polymer nanocomposites with “ultrahigh” refractive index. Polym. Adv. Tech. 2, 75–80.

    Google Scholar 

  • Yitai Q., 2000. In: Nalwa H.S. ed. Handbook of Nanostructured Materials and Nanotechnology Vol. 1, Academic Press, San Diego, p. 455.

    Google Scholar 

  • Zimmermann L., M. Weibel, W. Caseri & U.W. Suter, 1992. Polymer nanocomposites with “ultralow” refractive index. Polym. Adv. Tech. 4, 1–7.

    Google Scholar 

  • Zimmerman L., M. Weibel, W. Caseri & U.W. Suter, 1993. High refractive index films of polymer nanocomposites. J. Mater. Res. 8, 1742–1748.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carotenuto, G., DeNicola, S. & Nicolais, L. Spectroscopic Study of the Growth Mechanism of Silver Microclusters. Journal of Nanoparticle Research 3, 467–473 (2001). https://doi.org/10.1023/A:1012512005426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012512005426

Navigation