Skip to main content
Log in

Copper and Copper Oxide Nanoparticle Formation by Chemical Vapor Nucleation From Copper (II) Acetylacetonate

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Crystalline nanometer-size copper and copper (I) oxide particle formation was studied by thermal decomposition of copper acetylacetonate Cu(acac)2 vapor using a vertical flow reactor at ambient nitrogen pressure. The experiments were performed in the precursor vapor pressure range of P prec = 0.06 to 44 Pa at furnace temperatures of 431.5°C, 596.0°C, and 705.0°C. Agglomerates of primary particles were formed at P prec0.1 Pa at all temperatures. At 431.5°C the number mean size of the primary particles increased from D p = 3.7 nm (with geometric standard deviation σg = 1.42) to D p = 7.2 nm (σg = 1.33) with the increasing precursor vapor particle pressure from 1.8 to 16 Pa. At 705.0°C the primary particle size decreased from D p = 24.0 nm (σg=1.57) to D p = 7.6 nm (σg = 1.54), respectively.

At furnace temperatures of 431.5°C and 596.0°C only crystalline copper particles were produced. At 705.0°C the crystalline product of the decomposition depended on the precursor vapor pressure: copper particles were formed at P prec>10 Pa, copper (I) oxide at P precleq 1 Pa, and a mixture of the metal and its oxide at intermediate vapor pressures. A kinetic restriction on copper particle growth was shown, which leads to the main role of Cu2 molecule participation in the particle formation. The formation of copper (I) oxide particles occurs due to the surface reaction of the decomposition products (mainly carbon dioxide). For the explanation of the experimental results, a model is proposed to build a semiempirical phase diagram of the precursor decomposition products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams C.R. & T.J. Jennings, 1964. Mechanism studies of the catalytic oxidation of propylene. J. Catal. 3, 549.

    Google Scholar 

  • Altman I.S., P.V. Pikhitsa & M. Choi, 2001. Key effects at nanoparticle formation by combustion techniques. In: Kish L., Granqvist C.G., Marlow W., Siegel R.W. eds. Fundamentals of Gas-Phase Nanotechnology (in press).

  • Ayaappan S., R.S. Gopalan, G.N. Subbanna & C.N.R. Rao, 1997. Nanoparticles of Ag, Au, Pd, and Cu Produced by Alcohol Reduction of the Salts. J. Mater. Res. 12, 398.

    Google Scholar 

  • Bouland D., J.C. C houard, A. Briand, F. Chartier, J.L. Lacour, P. Mauchien & J.M. Mermet, 1992. Experimental study of aerosol production by laser ablation. J. Aerosol Sci. 23(1), 225.

    Google Scholar 

  • Bowles R.S., J.J. Kolstad, J.M. Calo & R.P. Andres, 1981. Generation of molecular clusters of controlled size. Surf. Sci. 106, 117.

    Google Scholar 

  • Campbell C.T., K.A. Daube & J.M. White, 1987. Cu/ZnO(0001) and Cu(111): Model Catalysts for Methanol Synthesis. Surf. Sci. 182, 458.

    Google Scholar 

  • Champion Y. & J. Bigot, 1996. Characterization of nanocrystalline copper powders preparing by melting in a cryogenic liquid. Mater. Sci. Eng. A217/218, 58.

    Google Scholar 

  • Chou K.-S. & G.-J. Tsai, 1994. Dynamic evaporation behaviour of diketonate compounds of yttrium, copper and barium. Thermochim. Acta 240, 129.

    Google Scholar 

  • Daroczi L., M.T. Beck, D.L. Beke, M. Kis-Varga, L. Harasztosi & N. Takacs, 1998. Production of Fe and Cu nanocrystalline particles by thermal decomposition of ferro-and copper-cyanides. Mat. Sci. Forum 269–272, 319.

    Google Scholar 

  • Dhas N.A., C.P. Raj & A. Gedanken, 1998. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10, 1446.

    Google Scholar 

  • Ding J., T. Tsuzuki, P.G. McCormick & R. Street, 1996. Ultrafine Cu articles prepared by mechanical process. J. Alloys and Comp. 234, L1.

    Google Scholar 

  • Du F.-L., Z.-L. Cui, Z.-K. Zhang & S.-Y. Chen, 1997. Behavior of supported nano-copper catalyst in CO oxidation. J. Nat. Gas Chem. 6, 135.

    Google Scholar 

  • Folmanis G. É. & V.A. Uglov, 1991. Nanocrystalline copper powder produced by electrolysis. Poroshkovaya Metallurgiya 2, 5.

    Google Scholar 

  • Gerfin T., M. Becht & K.-H. Dahmen, 1993. Preparation of copper and copper oxide film by metal-organic chemical vapour deposition using β-ketoiminato complexes. Mater. Sci. Eng. B17, 97.

    Google Scholar 

  • Girardin D. & M. Maurer, 1990. Ultrafine metallic powders prepared by high pressure plasma: synthesis and characterization. Mat. Res. Bull. 25, 119.

    Google Scholar 

  • Gredig S.V., R.A. Köppel & A. Baiker, 1997. Synthesis of methylamines from carbon dioxide, hydrogen and ammonia over supported copper catalysts. Influence of support. J. Mol. Catal. A: Chemical 127, 133.

    Google Scholar 

  • Haas V. & R. Birringer, 1992. The morphology and size of nano structured Cu, Pd, andWgenerated by sputtering. Nanostruct. Mater. 1, 491.

    Google Scholar 

  • Hammadi Z., B. Lecohier & H. Dallaporta, 1993. Chemical vapor deposition of metallic copper film in the presence of oxygen. J. Appl. Phys. 73, 5213.

    Google Scholar 

  • Hammerschmidt W., A. Baiker, A. Wokaun & W. Fluhr, 1986. Copper catalyzed synthesis of cyclic amines from aminoalcohols. Appl. Catal. 20, 305.

    Google Scholar 

  • Herley P.J., W. Jones & G.R. Millward, 1989. Electron beam decomposition of copper hydride and the generation of ultra-fine particles of copper. J. Mater. Sci. Lett. 8, 1013.

    Google Scholar 

  • Holzschuh H. & H. Suhr, 1990. Deposition of copper oxide (Cu2O, CuO) thin films at high temperatures by plasmaenhanced CVD. Appl. Phys. A51, 486.

    Google Scholar 

  • Huang H.H., F.Q. Yan, Y.M. Kek, C.H. Chew, G.Q. Xu, W. Ji, P.S. Oh & S.H. Tang, 1997. Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13, 172.

    Google Scholar 

  • Kaito C., K. Fujita & H. Hashimoto, 1973. Electron-microscopy study of oxidation processes by metal fine particles. Jpn. J. Appl. Phys. 12, 489.

    Google Scholar 

  • Kaito C., T. Watanabe, K. Ochtsuka, F. Chen & Y. Saito, 1993. Anewstudy on the production of clusters from copper ultrafine particles. J. Cryst. Growth 128, 267.

    Google Scholar 

  • Kashu S., M. Nagase, C. Hayashi, R. Uyeda, N. Wada & A. Tasaki, 1974. Preparation and properties of ultrafine metal powders. Proc. 6th Int. Vac. Congr. 1974. Jpn. J. Appl. Phys. 14 (Suppl. 2), 491.

    Google Scholar 

  • Kellerson A., E. Kn¨ozinger, W. Langel & M. Giersig, 1995. Cu2O quantum-dot particles prepared from nanostructured copper. Adv. Mater. 7, 652.

    Google Scholar 

  • Kijenski J., J. Burger & A. Baiker, 1984. Copper catalyzed disproportionation of benzylamine methyl derivatives. Appl. Catal. 11, 295.

    Google Scholar 

  • Kijenski J., P.J. Niedzielski & A. Baiker, 1989. Synthesis of cyclic amines and their alkyl derivatives from amino-alcohols over supported copper catalysts. Appl. Catal. 53, 107.

    Google Scholar 

  • Kirchheim R., X.Y. Huang, P. Cui, R. Birriner & H. Gleiter, 1991. Free energy of active atoms in grain boundaries of nanocrystalline copper, nickel and palladium. Nanostruct. Mater. 1, 167.

    Google Scholar 

  • Klenov D.O., G.N. Kryukova & L.M. Plyasova, 1998. Localization of copper atoms in the structure of the ZnO catalyst for methanol synthesis. J. Mater. Chemistry 8, 1665.

    Google Scholar 

  • Klier K., 1982. Methanol synthesis. Adv. Catal. 31, 243.

    Google Scholar 

  • Knacke O., O. Kubaschewski & K. Hesselmann, 1991. Thermochemical Properties of Inorganic Substances. Springer-Verlag, Berlin.

    Google Scholar 

  • Knoesel E., A. Hotzel & M. Wolf, 1998. Temperature dependence of surface state lifetimes, dephasing rates and binding energies on Cu(111) studies with time-resolved photoemission. J. Elect. Spectr. Rel. Phen. 88–91, 577.

    Google Scholar 

  • Kodas T.T. & M.J. Hampden-Smith, 1999. Aerosol Processing of Materials. Wiley-VCH, New York.

    Google Scholar 

  • Kofstad P., 1972. Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides. Wiley-Interscience, New York.

    Google Scholar 

  • Kondrat'ev V.N., 1964. Chemical Kinetics of Gas Reactions. Persimmon Press Oxford, London.

    Google Scholar 

  • Kulikov I.S., 1969. Thermal Dissociation of Compounds. (Termicheskaja dissociatciya soedinenij) Metallurgia, Moscow (in Russian).

    Google Scholar 

  • Lisieski I. & M.P. Pileni, 1993. Synthesis of copper clusters using reverse micelles as microreactors. J. Am. Chem. Soc. 115, 3887.

    Google Scholar 

  • Lisieski I. & M.P. Pileni, 1995. Copper metallic particles synthesized "in situ" in reverse micelles: influence of various parameters on the size of particles. J. Phys. Chem. 99, 5077.

    Google Scholar 

  • Lisieski I., F. Billoudet & M.P. Pileni, 1996. Control of the shape and the size of copper metallic particles. J. Phys. Chem. 100, 4160.

    Google Scholar 

  • Long N.J. & A.K. Petford-Long, 1986. In situ Electron-beaminduced reduction of CuO: a study of phase transformation in cupric oxide. Ultramicroscopy 20, 151.

    Google Scholar 

  • Majumdar D., T.A. Shefelbine, T.T. Kodas & H.D. Glicksman, 1996. Copper (I) oxide powder generation by spray pyrolysis. J. Mater. Res. 11, 2861.

    Google Scholar 

  • Maruyama T. & T. Shirai, 1995. Copper thin film prepared by chemical vapour deposition from copper (II) acetylacetonate. J. Mater. Sci. 30, 5551.

    Google Scholar 

  • Marzouk H.A., J.S. Kim, P.J. Reucroft, R.J. Jacob, J.D. Robertson & C. Eloi, 1994. Evaluation of copper chemical-vapor-deposition films on glass and Si(100) substrates. Appl. Phys. A58, 607.

    Google Scholar 

  • Moini M. & J.R. Eyler, 1988. Formation of small negative and positive cluster ions of gold, silver, and copper by direct laser vaporization. J. Chem. Phys. 88, 5512.

    Google Scholar 

  • Pauleau Y. & A.Y. Fasasi, 1991. Kinetics of sublimation of copper (II) acetylacetonate complex used for chemical vapor deposition of copper films. Chem. Mater. 3, 45.

    Google Scholar 

  • Pelletier J., R. Pantel, C. Oberlin, Y. Pauleau & P. Gouy-Pialler, 1991. Preparation of copper films at ambient temperature by microwave plasma-enhanced chemical vapor deposition from the copper (II) acetylacetonate-argon-hydrogen system. J. Appl. Phys. 70, 3862.

    Google Scholar 

  • Peoples S.M., J.F. McCarthy, L.C. Chen, D. Eppelsheimer & M.O. Amdur 1988. Copper oxide aerosol: generation and characterization. Am. Ind. Hyg. Assoc. J. 49, 271.

    PubMed  Google Scholar 

  • Pereia R., M. Rufo & U. Schuchardt, 1994. Copper (II) catalyzed oxidation of cyclohexane by tert-butyl hydroperoxide. J. Braz. Chem. Society 5, 83.

    Google Scholar 

  • Petrov Yu.I., 1986. Clusters and Small Particles. (Klastery i malye chastitcy) Nauka, Moscow (in Russian).

    Google Scholar 

  • Pietrikova A. & E. Kapusanska, 1991. Production of very fine copper powder and control of its properties. Metallic Mater. 29, 626.

    Google Scholar 

  • Runeberg J., A. Baiker & J. Kijenski, 1985. Copper catalyzed amination of ethylene glycole. Appl. Catal. 17, 309.

    Google Scholar 

  • Shannon I.J., F. Rey, G. Sankar, J.M. Thomas, T. Maschmeyer, A.M. Waller, A.E. Palomares, A. Corma, A.J. Dent & G.N. Greaves, 1996. Hydrotalcite-derived mixed oxides containing copper: catalysts for the removal of nitric oxide. J. Chem. Soc. Farad. Trans. 92, 4331.

    Google Scholar 

  • Shiau C.-Y. & J.C. Tsai, 1997. Cu/r-Al2O3 Catalyst prepared by electrolyses method. J. Chin. Ist. Chem. Eng. 28, 55.

    Google Scholar 

  • Smithells C.J. & E.A. Brandes, 1983. Smithells Metals Reference Book. Butterworths, London.

    Google Scholar 

  • Takahashi T., J. Suzuki, M. Saburi & Y. Uchida, 1988. Selective preparation of copper, copper (I) oxide, or copper (II) oxide fine particles from organocopper compounds. J. Mater. Sci. Let. 7, 1251.

    Google Scholar 

  • Teghil R., D. Ferro, L. Bencivenni & M. Pelino, 1981. A thermodynamic study of the sublimation processes of aluminium and copper acetylacetonates. Thermochim. Acta 44, 213. Tijburg I.I.M., Ph.D. Thesis, Utrecht, The Netherlands, 1989.

    Google Scholar 

  • Tonneau D., R. Pierrisnard, H. Dallaporta & W. Marine, 1995. Growth kinetics of copper films from photoassisted CVD of copper acetylacetonate. Journal de Physique IV 5(C5), 629.

    Google Scholar 

  • Tsyganova E.I., G.A. Mazurenko, V.N. Drobotenko, L.M. Dyagileva & Yu.A. Aleksandrov, 1992. Kinetic regularities of thermolysis of yttrium, barium, copper acetylacetinates. J. Gen. Chem. 62, 407 (Translated from Zh. Obshch. Khim. (USSR) 62, 499).

    Google Scholar 

  • Voge H.H. & C.R. Adams, 1967. Catalytic oxidation of olefins. Adv. Catal. 17, 151.

    Google Scholar 

  • Vorobyova S.A., V.V. Mushinsky & A.I. Lesnikovich, 1997. Copper oxide produced by two-phase synthesis in "octanewater" system. Dokl. Acad. Sci. Belarus 41, 62.

    Google Scholar 

  • Vultier R., A. Baiker & A. Wokaun, 1987. Copper catalyzed amination of 1,6-hexanediol. Appl. Catal. 30, 167. Van der Meijden J., Ph.D. Thesis, Utrecht, The Netherlands, 1981.

    Google Scholar 

  • Weins W.N., J.D. Makinson, R.J. De Angelis & S.C. Axtell, 1997. Low-frequency internal friction studies of nanocrystalline copper. Nanostruct. Mater. 9, 509.

    Google Scholar 

  • Winklmayr W., G.P. Reischl, A.O. Linder & A. Berner, 1991. A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 100 nm. J. Aerosol Sci. 22, 289.

    Google Scholar 

  • Xu J., X. Sun, W. Chen, X. Fan & W. Wei, 1992. Synthesis of copper ultrafine particles by using gas evaporation. Cailiao Kexue Jinzhan 6, 209.

    Google Scholar 

  • Yurieva T.M., L.M. Plyasova, T.A. Krieger, V.I. Zaikovskii, O.V. Makarova & T.P. Minyukova, 1993. State of copper containing catalyst for methanol synthesis in the reaction medium. React. Kinet. Catal. Lett. 51, 495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esko I. Kauppinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasibulin, A.G., Ahonen, P.P., Richard, O. et al. Copper and Copper Oxide Nanoparticle Formation by Chemical Vapor Nucleation From Copper (II) Acetylacetonate. Journal of Nanoparticle Research 3, 383–398 (2001). https://doi.org/10.1023/A:1012508407420

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012508407420

Navigation