, Volume 459, Issue 1–3, pp 201–212 | Cite as

Composition, invertebrate community and productivity of a beaver dam in comparison to other stream habitat types

  • Peter Rolauffs
  • Daniel Hering
  • Susanne Lohse


Insect emergence from three different sections of a small mountain brook in Germany was studied: a free-flowing section (`brook'), a section impounded by beavers (`beaver pond') and a beaver dam. The three sections had very different faunas with that of the dam being more similar to that of the brook than that of the pond. The heterogeneity of the fauna was greatest in the dam and lowest in the pond. Median emergence density in the dam was 443 specimens m−2 d−1. This was 3.2 times higher than median emergence density in the brook section and 5.5 times higher than median emergence density in the pond section. In particular, the density of emerging Trichoptera (especially filter-feeding species) was increased. Mean annual number of emerging EPTC species was 32.3/trap (779 cm2 ground area) in the dam, 18.4/trap in the brook and 11.0/trap in the pond. Emerging biomass was highest in the dam (18.0 – 26.7 g m−2 yr−1; 5.0 times higher than in the free flowing section and 5.4 times higher than in the pond section). The composition of a recently broken beaver dam is described by measuring all pieces of wood used in building the dam and analysing sediment samples. The dam consisted of a framework of wood pieces almost entirely of a diameter <5 cm, in which cavities are partly filled with fine sediment (mean organic content = 20%). The `inner surface' of the dam was 2.09 times higher than the dam's ground area and 1.63 times higher than the dam's surface. Beavers, therefore, significantly increase the heterogeneity of faunal composition and productivity of small brooks.

Castor fiber woody debris beaver pond insect emergence biomass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Butts, W. L., 1986. Changes in local mosquito fauna following beaver (Castor canadensis) activity. J. am. Mosquito Control Ass. 2: 300–304.Google Scholar
  2. Cirmo, P. & C. T. Driscoll, 1993. Beaver pond biogeochemistry: acid neutralizing capacity generation in a headwater wetland. Wetlands 13: 277–292.Google Scholar
  3. Clifford H. F., G.M. Wiley & R. J. Casey, 1993. Macroinvertebrates of a beaver-altered boreal stream of Alberta, Canada, with special reference to the fauna on the dams. Can. J. Zool. 71: 1439–1447.Google Scholar
  4. Djoshkin, W. W. & W. G. Safonow, 1972. Die Biber der alten und neuen Welt. Neue Brehm Bücherei, Wittenberg/Lutherstadt: 168 pp.Google Scholar
  5. Ford, T. E. & R. J. Naiman, 1988. Alteration of carbon cycling by beaver: methane evasion rates from boreal forest streams and rivers. Can. J. Zool. 66: 529–533.Google Scholar
  6. Gauch, H. G., 1982. Multivariate analysis in community ecology, Cambridge University Press, New York: 298 pp.Google Scholar
  7. Gurnell, A. M., K. J. Gregory & G. E. Petts, 1995. The role of coarse woody debris in forest aquatic habitats: implications for management. Aquat. Conserv: Mar. Freshwat. Ecosyst. 5: 143–166.Google Scholar
  8. Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G.W. Lienkaemper, K. Cromack & K.W. Cummins, 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 15: 133–302.Google Scholar
  9. Harthun, M., 1998. Biber als Landschaftsgestalter. Einfluß des Bibers (Castor fiber albicus, Matschie 1907) auf die Lebensgemeinschaft von Mittelgebirgsbächen. Schriftenreihe der Horst-Rohde-Stiftung, Maecenata-Verlag: 199 pp.Google Scholar
  10. Harthun, M., 1999. Der Einfluß des Bibers (Castor fiber albicus) auf die Fauna (Odonata, Mollusca, Trichoptera, Ephemeroptera, Diptera) von Mittelgebirgsbächen in Hessen (Deutschland). Limnologica 29: 449–464.Google Scholar
  11. Heidecke, D., 1998. Der Elbebiber. In Hessisches Ministerium des Innern und für Landwirtschaft, Forsten und Naturschutz (ed) 10 Jahre Biber im Spessart: 1–10.Google Scholar
  12. Hering, D., J. Kail, S. Eckert, M. Gerhard, E. I. Meyer, M. Mutz, M. Reich & I. Weiß, 2000. Coarse woody debris quantity and distribution in Central European streams. Int. Rev. Hydrobiol. 85: 5–23.Google Scholar
  13. Hodkinson, I. D., 1975. Energy flow and organic matter decomposition in an abandoned beaver pond ecosystem. Oecologia 21: 131–139.Google Scholar
  14. Hoffmann, A. & D. Hering, 2000. Wood-associated macroinvertebrate fauna in Central European streams. Int. Rev. Hydrobiol. 85: 25–48.Google Scholar
  15. Huryn, A. D. & B. D. Wallace, 2000. Life history and production of stream insects. Annu. Rev. Entomol. 45: 83–110.Google Scholar
  16. Keast, A. & M. G. Fox, 1990. Fish community structure, spatial distribution and feeding ecology in a beaver pond. Envir. Biol. Fish. 27: 201–214.Google Scholar
  17. Leidholt-Bruner, K., D. E. Hibbs & W. C. McComb, 1992. Beaver dam locations and their effects on distribution and abundance of Coho Salmon fry in two coastal Oregon streams. Northwest Sci. 66: 218–223.Google Scholar
  18. McDowell, D. M. & R. J. Naiman, 1986. Structure and function of a benthic invertebrate stream community as influenced by beaver (Castor canadensis). Oecologia 68: 481–489.Google Scholar
  19. Medwecka-Kornas, A. & R. Hawro, 1993. Beaver influence upon the vegetation of Saspowka brook in the Ojcow National Park (in Polish). Prace i materialy muzeum im. Prof.Wladyslawa Szafera 1993: 90–100.Google Scholar
  20. Naiman, R. J. & H. Decamps, 1997. The Ecology of interfaces: riparian zones. Ann. Rev. Ecol. Syst. 28: 621–658.Google Scholar
  21. Naiman, R. J., S. R. Elliott, J. M. Helfield & T. C. O'Keefe, 1999. Biophysical interactions and the structure and dynamics of riverine ecosystems: the importance of biotic feedbacks. Hydrobiologia 410: 79–86.Google Scholar
  22. Naiman, R. J., D. M. McDowell & B. S. Farr, 1984. The influence of beaver (Castor canadensis) on the production dynamics of aquatic insect. Verh. int. Ver. Limnol. 22: 1801–1810.Google Scholar
  23. Naiman, R. J., J. M. Melillo & J. E. Hobbie, 1986. Ecosystem alteration of boreal forest streams by beaver (Castor canadensis). Ecology 67: 1254–1269.Google Scholar
  24. Nolet, B. A. & F. Rosell, 1998. Comeback of the beaver Castor fiber: an overview of old and new conservation problems. Biol. Conserv. 83: 165–173.Google Scholar
  25. Richard, P. B., 1967. Le Determisime de la construcion des barrages chez le castor du rhone. La Terre et la Vie 4: 339–407.Google Scholar
  26. Saarenmaa, H., 1978. Kaarnakuoriaisten (Col., Scolytidae) esiintyminen eräässä kanadanmajavan (Castor canadensis Kuhl) aiheuttaman tulvan seurauksena kuolleessa metsikössä. Silva Fennica 12: 201–216.Google Scholar
  27. Schlosser, I. J., 1995. Disperal, boundary processes, and trophiclevel interactions in streams adjacent to beaver ponds. Ecology 76: 908–925.Google Scholar
  28. Schulte, R., 1995. Die Verbreitung des Bibers (Castor fiber L.) in Deutschland und angrenzenden Gebieten – gegenwärtige Situation, Ausbreitungstendenzen und Perspektiven des Biberschutzes. Säugetierkdl. Mitt. 36: 13–27.Google Scholar
  29. Smith, M. E., C. T. Driscoll, B. J. Wyskowski, C. M. Brooks & C.C. Cosentini, 1991. Modification of stream ecosystem structure and function by beaver (Castor canadensis) in the Adirondack Mountains, New York. Can. J. Zool. 69: 55–61Google Scholar
  30. Statzner, B. & V. H. Resh, 1993. Multiple-site and –year analyses of stream insect emergence: a test of ecological theory. Oecologia 96: 65–79.Google Scholar
  31. Stock, J. D. & I. J. Schlosser, 1991. Short-term effects of a catastrophic beaver dam collapse on stream fish community. Envir. Biol. Fish. 31: 123–129.Google Scholar
  32. White, D. S., 1990. Biological relationships to convective flow patterns within stream beds. Hydrobiologia 196: 149–158.Google Scholar
  33. Woo, M.-K. & J. M. Waddington, 1990. Effects of beaver dams on subarctic wetland hydrology. Arctic 43: 223–230.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Peter Rolauffs
    • 1
  • Daniel Hering
    • 2
  • Susanne Lohse
    • 1
  1. 1.Department of Ecology, Faculty of HydrobiologyUniversity of EssenEssenGermany
  2. 2.Department of Ecology, Faculty of HydrobiologyUniversity of EssenEssenGermany

Personalised recommendations