Skip to main content
Log in

Exhibition of High- and Low-spin States of the High-temperature Fcc Phase in Nanoparticles of Fe, Fe-rich and Co-rich Alloys

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The results of combined X-ray and Mössbauer studies of structure and local magnetic ordering in massive substances Fe, Fe–Ni, Fe–Mn, Fe–Ni–Mn, Fe–Pt, Fe–Co and aerosol nanoparticles produced by their evaporation in rare Ar atmosphere are discussed. This technique provides a stochiometric composition of alloys in nanoparticles. The smallest (5–8 nm) particles for all alloys containing Fe 60–65% are shown to have a bcc structure whereas with doubling a size the particles acquire a fcc structure. This is explained by the fact that by cooling the particles in the course of preparation they quickly reach a state close to the equilibrium and, according to the constitution diagram, must decompose into two phases. Such decomposition in massive alloys was never observed at temperatures below 300°C because of diffusive difficulties. It is found that as-fresh aerosol particles are covered with an X-ray amorphous oxide shell, which is displayed in the room temperature Mössbauer spectra as a superparamagnetic doublet and is transformed into sextet at lower temperatures. An availability of the oxide shell has no practical influence on the particles’ structure. The obtained Mössbauer spectra are considered with the model suggested by R.J. Weiss in 1963, on existence of two-spin states in the high-temperature fcc modification of Fe and its alloys. Both states coexist, moreover, in the Mössbauer spectra the ferromagnetic state dominates at high temperature and anti-ferromagnetic one at low temperature. The ferromagnetic state manifests itself as a remnant of the frozen magnetic ordering of the high-temperature fcc modification in the resulting bcc structure, whereas the anti-ferromagnetic state is related to some fcc fraction retained under the particles’ quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-Elmeguid M.M. & H. Micklitz, 1989. Physica B 161, 17–21.

    Google Scholar 

  • Abrahams S.C., L. Guttman & J.S. Kasper, 1962. Phys. Rev. 127, 2052–2055.

    Google Scholar 

  • Acet M., H. Zähres, E.F. Wassermann & W. Pepperhoff, 1994. Phys. Rev. B 49, 6012–6017.

    Article  Google Scholar 

  • Acet M., E.F. Wassermann, K. Andersen, A. Murani & O. Schärpff, 1997. Europhys. Lett. 40, 93–98.

    Google Scholar 

  • Asano H., 1969. J. Phys. Soc. Jpn. 27, 542–553.

    Google Scholar 

  • Baldokhin Yu.V. & Yu.I. Petrov, 1992. Sov. Phys. Dokl. 37, 563–565.

    Google Scholar 

  • Baldokhin Yu.V., P.Ya. Kolotyrkin, I.I. Morozov, Yu.I. Petrov & E.A. Shafranovsky, 1993. Phys. Dokl. 38, 226–228.

    Google Scholar 

  • Baldokhin Yu.V., P.Ya. Kolotyrkin, Yu.I. Petrov & E.A. Shafranovsky, 1994a. Phys. Lett. A189, 137–139.

    Google Scholar 

  • Baldokhin Yu.V., P.Ya. Kolotyrkin, Yu.I. Petrov & E.A. Shafranovsky, 1994b. J. Appl. Phys. 76, 6496–6498.

    Google Scholar 

  • Baldokhin Yu.V., P.Ya. Kolotyrkin, Yu.I. Petrov & E.A. Shafranovsky, 1995. Phys. Dokl. 40, 491–494.

    Google Scholar 

  • Baldokhin Yu.V., P.Ya. Kolotyrkin, Yu.I. Petrov & E.A. Shafranovsky, 1996a. Phys. Lett. A211, 237–241.

    Google Scholar 

  • Baldokhin Yu.V., P.Ya. Kolotyrkin, Yu.I. Petrov & E.A. Shafranovsky, 1996b. Dokl. Phys. Chem. 147, 45–48.

    Google Scholar 

  • Baldokhin Yu.V., P.Ya. Kolotyrkin, Yu.I. Petrov & E.A. Shafranovsky, 1997. J. Appl. Phys. 82, 3042–3046.

    Google Scholar 

  • Baldokhin Yu.V., P.Ya. Kolotyrkin, V.A. Makarov, Yu.I. Petrov & E.A. Shafranovsky, 1998a. Phase Transitions 64, 239–247.

    Google Scholar 

  • Baldokhin Yu.V., Yu.I. Petrov & E.A. Shafranovsky, 1998b. BRAS Phys. 62, 919–925.

    Google Scholar 

  • Baldokhin Yu.V., Yu.I. Petrov & E.A. Shafranovsky, 1999. In: Chuev G.N., Lakhno V.D. & Nefedov A.P. eds. Progress in the Physics of Clusters.World Scientific, Singapore, pp. 313–326.

    Google Scholar 

  • Basinski Z.S.,W. Hume-Rothery & A.L. Sutton, 1955. Proc. Roy. Soc. London 229, 459–467.

    Google Scholar 

  • Bauminger R, S.C. Cohen, A. Marinov, S. Oper & E. Segal, 1961. Phys. Rev. 122, 1447–1450.

    Google Scholar 

  • Belov K.P., 1961. Magnetic transitions. Consultants Bureau, New York: p. 242 (translated from Russian ‘Magnitnye prevrashcheniia’ by Belov K.P., 1959. Fizmatgiz, Moscow: p. 259.)

    Google Scholar 

  • Bendick W., H.H. Ettwig, F. Richter & W. Pepperhoff, 1977. Z. Metallk 68, 103–107.

    Google Scholar 

  • Bendick W., H.H. Ettwig & W. Pepperhoff, 1979. J. Magn. Magn. Mater. 10, 214–216.

    Google Scholar 

  • Brand R.A., 1987. Nucl. Instrum. Methods B 28, 398–416.

    Google Scholar 

  • Endoh Y. & Y. Ishikawa, 1971.J. Phys. Soc. Jpn. 30, 1614–1627.

    Google Scholar 

  • Entel P., E. Hoffmann, P. Mohn, K. Schwarz & V.L. Moruzzi, 1993. Phys. Rev. B 47, 8706–8720.

    Google Scholar 

  • Gonser U., C.J. Meechan, A.H. Muir & H. Wiedersich, 1963. J. Appl. Phys. 34, 2373–2378.

    Google Scholar 

  • Granquist C.G. & R.A. Buhrman, 1976. J. Appl. Phys. 47, 2200–2219.

    Google Scholar 

  • Guen M.Ya. & A.V. Miller, 1983. Poverkhnost’ – Fizika, Khimiya, Mekhanika (Surf.–Phys. Chem. Mech.) 2, 150–154 (in Russian).

    Google Scholar 

  • Guen M.Y. & Yu.I. Petrov, 1969. Uspekhi Khimii (Adv. Chem.) 38, 2249–2278 (in Russian).

    Google Scholar 

  • Guen M.Ya., M.S. Ziskin & Yu.I. Petrov, 1959. Dok. Akad. Nauk SSSR 127, 366–368 (in Russian).

    Google Scholar 

  • Häglund J., 1993. Phys. Rev. B 47, 566–569.

    Google Scholar 

  • Halbauer R. & U. Gonser, 1983. J. Magn. Magn. Mater. 35, 55–56.

    Google Scholar 

  • Hayase M., M. Shiga & Y. Nakamura, 1971. J. Phys. Soc. Jpn. 30, 729–735.

    Google Scholar 

  • Herr U., J. Jing, U. Birringer, U. Gonser & H. Gleiter, 1986. Appl. Phys. Lett. 50, 472–474.

    Google Scholar 

  • ISOMES'89, 1989. Proceeding of the International Symposium on Magnetoelasticity and Electronic Structure of Transition Metals, Alloys and Films (20–22 March 1989, Duisburg, Germany). Physica B 161, 1–348.

    Google Scholar 

  • ISOMES II, 2000. Proceeding of the International Symposium on Magnetovolume Effects and Electronic Properties of Transition Metals, Alloys and Films (4–7 October 1998, Duisburg, Germany). Philos. Mag. B 20, 125–306.

    Google Scholar 

  • Jing J., X. Yang, Y. Hsia & U. Gonser, 1990. Surf. Sci. 233, 351–354.

    Google Scholar 

  • Johanson G.J., M.B. McGirr & D.A. Wheeler, 1970. Phys. Rev. B 1, 3208.

    Google Scholar 

  • Jung J., M. Fricke, G. Hampel & J. Hesse, 1991. Hyperfine Interactions 68, 275–278.

    Google Scholar 

  • Kaufmann L., E.V. Clougherty & R.J. Weiss, 1963. Acta Metall. 11, 323–335.

    Google Scholar 

  • Keune W., R. Halbauer, U. Gonser, J. Lauer & D.L. Williamson, 1977. J. Appl. Phys. 48, 2976–2979.

    Google Scholar 

  • Keune W., T. Ezawa, W.A.A. Macedo, U. Glos, K.P. Schletz & U. Kirschbaum, 1989. Physica B 161, 269–275.

    Google Scholar 

  • Kisker E., E.F. Wassermann & C. Carbone, 1987. Phys. Rev. Lett. 58, 1784–1787.

    PubMed  Google Scholar 

  • Kubaschewski O., 1982. Iron-Binary Phase Diagrams. Springer-Verlag, Berlin: p.185.

    Google Scholar 

  • Lontsova G.A. & Yu.I. Petrov, 1988. Dokl. Akad. Nauk SSSR 303, 1407–1410 (in Russian).

    Google Scholar 

  • Macedo W.A.A. & W. Keune, 1988. Phys. Rev. Lett. 61, 475–478.

    PubMed  Google Scholar 

  • Matsui M. & S. Chikazumi, 1978. J. Phys. Soc. Jpn. 45, 458–465.

    Google Scholar 

  • Moruzzi V.L., P.M. Marcus, K. Schwarz & P. Mohn, 1986. Phys. Rev. B 34, 1784–1791.

    Google Scholar 

  • Moruzzi V.L., 1990. Phys. Rev. B 41, 6939–6946.

    Google Scholar 

  • Muraoka Y., T. Fujiwara, M. Shiga & Y. Nakamura, 1981. J. Phys. Soc. Jpn. 50, 3284–3291.

    Google Scholar 

  • Murray P.J. & J.W. Linnit, 1976. J. Phys. Chem. Solids 37, 619–624.

    Google Scholar 

  • Nakamura Y. & N. Miyata, 1967. J. Phys. Soc. Jpn. 23, 223–229.

    Google Scholar 

  • Nakamura Y., M. Shiga & Y. Takeda, 1969. J. Phys. Soc. Jpn. 27, 1470–1474.

    Google Scholar 

  • Nakamura Y., K. Sumiyama & M. Shiga, 1979. J. Magn. Magn. Mater 12, 127–134.

    Google Scholar 

  • Ohno H. & M. Mekata, 1971. J. Phys. Soc. Jpn. 31, 102–108.

    Google Scholar 

  • Paduani C. & E.G. da Silva, 1994. J. Magn. Magn. Mater 134, 161–166.

    Google Scholar 

  • Papaefthymiou V., A. Kostikas, A. Simopoulos, D. Niarchos, S. Gangopadyay, G.S. Hadjipanayis, C.M. Sorensen & K.J. Klabunde, 1990. J. Appl. Phys. 67, 4487–4489.

    Google Scholar 

  • Petrov Yu.I., 1963. Prib. Tekh. Eksp. [Instrum. Exp. Tech. (USSR)] 4, 162–164 (in Russian).

    Google Scholar 

  • Petrov Yu.I., 1982. Physics of Small Particles. Nauka, Moscow, p. 359 (in Russian).

    Google Scholar 

  • Petrov Yu.I., 1986. Clusters and Small Particles. Nauka, Moscow, p. 367 (in Russian).

    Google Scholar 

  • Petrov Yu.I. & E.A. Shafranovsky, 1999. Dokl. Phys. 44, 605–609.

    Google Scholar 

  • Petrov Yu.I. & E.A. Shafranovsky, 2000. BRAS Phys. 64(8), 1238–1246.

    Google Scholar 

  • Petrov Yu.I., E.A. Shafranovsky, Yu.V. Baldokhin & G.A. Kochetov, 1999. J. Appl. Phys. 86, 7001–7005.

    Google Scholar 

  • Petrov Yu.I., E.A. Shafranovsky & Yu.V. Baldokhin, 2000. Solid State Commun. 113, 153–158.

    Google Scholar 

  • Pinski F.J., J. Staunton, B.L. Gyorffy, D.D. Johnson & G.M. Stocks, 1986. Phys. Rev. Lett. 56, 2096–2099.

    PubMed  Google Scholar 

  • Roy D.M. & D.G. Pettifor, 1977. J. Phys. F: Metal Phys. 7, L183–L187.

    Google Scholar 

  • Schlosser W.F., 1971. J. Phys. Chem. Solids 32, 939–949.

    Google Scholar 

  • Schneider T., M. Acet, B. Rellinghaus, E.F. Wassermann & W. Pepperhoff, 1995. Phys. Rev. B 51, 8917–8921.

    Google Scholar 

  • Shiga M., 1967. J. Phys. Soc. Jpn. 22, 539–546.

    Google Scholar 

  • Sucksmith W. & R.R. Pearce, 1938. Proc. Roy. Soc. (London) A 167, 189–204.

    Google Scholar 

  • Sumiyama K., M. Shiga & Y. Nakamura, 1976. J. Phys. Soc. Jpn. 40, 996–1001.

    Google Scholar 

  • Sumiyama K., M. Shiga, M. Morioka & Y. Nakamura, 1979. J. Phys. F: Metal Phys. 9, 1665–1677.

    Google Scholar 

  • Sumiyama K., Y. Emoto, M. Shiga & Y. Nakamura, 1981. J. Phys. Soc. Jpn. 50, 3296–3302.

    Google Scholar 

  • Tanji Y., Y. Nakagawa, Y. Saito, K. Nishimura & K. Nakatsuka, 1979. Phys. Status Solidi A 56, 513–519.

    Google Scholar 

  • Vol A.E., 1966. Handbook of Binary Metallic Systems; Structure and Properties. Israel Program for Scientific Translations, Jerusalem: v. 2. (translated from Russian 'stroenie i svoistva dvoinykh metallicheskikh system’ by Vol A.E., 1962. Fizmatgiz, Moscow: v. 2, p. 982).

    Google Scholar 

  • Wang C.S., B.M. Klein & H. Krakauer, 1985. Phys. Rev. Lett. 54, 1852–1855.

    PubMed  Google Scholar 

  • Wassermann E.F., 1989. Physica Scripta T 25, 209–219.

    Google Scholar 

  • Wassermann E.F., 1991. J. Magn. Magn. Mater 100, 346–362.

    Google Scholar 

  • Wassermann E.F. & P. Entel, 1995. J. De Physique IV 5, C8-287–C8-292.

    Google Scholar 

  • Weiss R.J., 1963. Proc. Phys. Soc. 82, 281–288.

    Google Scholar 

  • Weiss R.J., 1972. Philos. Mag. 26, 261–263.

    Google Scholar 

  • Wilkinson M.K. & C.G. Shull, 1956. Phys. Rev. 101, 516–524.

    Google Scholar 

  • Window B., 1973. J. Appl. Phys. 44, 2853–2861.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, Y., Shafranovsky, E. Exhibition of High- and Low-spin States of the High-temperature Fcc Phase in Nanoparticles of Fe, Fe-rich and Co-rich Alloys. Journal of Nanoparticle Research 3, 417–430 (2001). https://doi.org/10.1023/A:1012503000500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012503000500

Navigation