Skip to main content
Log in

Optical Investigation of the Effects of Substrate Orientation on Oxidation of Single Crystal β-NiAl

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Nondestructive optical techniques have been used to study the oxidation of low-index crystal faces of single-crystal β-NiAl as a function of temperature. Using these techniques, residual stress, phase composition, and thickness of the scales were determined at various temperatures. The oxidation of the three low-index surfaces, (001), (110), and (111) exhibit discernible differences. Consistently lower stress values are observed on (001) surfaces. Fluorescence and Raman results indicate a higher concentration of θ-Al2O3 on (001) faces and lower concentrations on (111) faces at all temperatures between 800 and 1200°C. Although the residual stresses are higher on (110) faces, these are the only surfaces which maintain adherence up to 1450°C. All surfaces exhibit a stress anomaly between 1200 and 1250°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jedlinski and S. Mrowec, Mater. Sci. Eng. 87, 281–287 (1987).

    Google Scholar 

  2. R. Hutchings and M. H. Loretto, Metal Sci. 12, 503 (1978).

    Google Scholar 

  3. J. E. McDonald and J. G. Eberhard, Metall. Trans. 233, 512 (1965).

    Google Scholar 

  4. H. J. Schmutzler, H. Viefhaus, and H. J. Grabke, Surf. Interf. Anal. 18, 581 (1992).

    Google Scholar 

  5. H. J. Grabke, D. Weimer, and H. Viefhaus, Appl. Surf. Sci. 47, 243 (1991).

    Google Scholar 

  6. S. Uran, B. W. Veal, M. Grimsditch, J. Pearson, and A. Berger, Oxid. Met. 54, 73 (2000).

    Google Scholar 

  7. N. N. Khoi, W. W. Smeltzer, and J. D. Embury, J. Electrochem. Soc. 122, 1495–1503 (1975).

    Google Scholar 

  8. J. Doychak, J. L. Smialek, and T. E. Mitchell, Metall. Trans. A, 20A, 499–518 (1989).

    Google Scholar 

  9. G. W. Goward, J. Met. 22, 31 (1970).

    Google Scholar 

  10. J. H. Wood and E. Goldman, in Superalloys II, C. T. Sims et al., eds. (Wiley, New York, 1987), pp. 359–384.

    Google Scholar 

  11. T. N. Rhys-Jones, Corros. Sci. 29, 623–646 (1989).

    Google Scholar 

  12. R. Doralia, J. Metals 43, 44–49 (1991).

    Google Scholar 

  13. R. Doralia, D. F. Lahrman, R. D. Field, F. R. Dobbs, K. M. Chang, E. H. Goldman, and D. G. Konitzer, Ordered IntermetallicsPhysical Metallurgy and Mechanical Behavior, C. T. Lui, R. Cahn, and G. Sauthoff, eds. (NATO ASI, Series: Applied Sciences, Vol. 213, Kluwer Academic Publishers, Boston, 1992), p. 299.

    Google Scholar 

  14. D. Miracle and R. Doralia, in Intermetallic Compounds: Principles and Practice, J. H. Westbrook and R. L. Fleischer, eds. (Wiley, New York, 1995).

    Google Scholar 

  15. D. M. Lipkin and D. R. Clarke, Oxid. Met. 45, 267 (1996).

    Google Scholar 

  16. A. L. Schawlow, in Advances in Quantum Electronics, J. R. Singer, ed. (Columbia Press, New York, 1961).

    Google Scholar 

  17. L. Grabner, J. Appl. Phys. 49, 580–583 (1978).

    Google Scholar 

  18. Q. Ma and D. R. Clarke, J. Amer. Ceram. Soc. 76, 1433–1440 (1993).

    Google Scholar 

  19. Q. Ma, L. C. Liang, D. R. Clarke, and J. W. Hutchinson, Acta Metall. Mater. 42, 3299–3308 (1994).

    Google Scholar 

  20. Q. Ma, W. Pompe, J. D. French, and D. R. Clarke, Acta Metall. Mater. 42, 1673–1681 (1994).

    Google Scholar 

  21. Q. Wen, D. R. Clarke, N. Yu, and M. Nastasi, Appl. Phys. Lett. 66, 293 (1995).

    Google Scholar 

  22. J. He and D. R. Clarke, J. Amer. Ceram. Soc. 78, 1347 (1995).

    Google Scholar 

  23. D. Renusch, M. Grimsditch, I. Koshelev, B. Veal, and P. Y. Hou, Oxid. Met. 48, 471–495 (1977).

    Google Scholar 

  24. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermophysical Properties Matter, Vol. 12 (IFI/Plenum, New York, 1977).

    Google Scholar 

  25. A. Goldsmith, T. E. Waterman, and H. J. Hirschhorn, Handbook of Thermophysical Properties of Solid Materials, Vol. III, Ceramics (Pergamon Press, New York, 1961).

    Google Scholar 

  26. S. Uran, B. Veal, M. Grimsditch, J. Pearson, and A. Berger, Oxid. Met., 54, 73–85 (2000).

    Google Scholar 

  27. D. Renusch, B. Veal, K. Natesan, and M. Grimsditch, Oxid. Met. 46, 365–381 (1996).

    Google Scholar 

  28. D. Renusch, M. Grimsditch, A. P. Paulikas, and B. Veal, High Temperature Corrosion and Materials Chemistry, P. Hou, M. McNallan, R. Oltra, E. Opila, and D. Shores, eds. (Electrochemical Society, Pennington, NJ, 1998), p. 76.

    Google Scholar 

  29. G. C. Wood and B. Chattopadhyay, Corros. Sci. 10, 471–480 (1970).

    Google Scholar 

  30. D. Renusch, M. Grimsditch, J. Jørgensen, and J. Hodges, Oxid. Met. 56, 297–309 (2001).

    Google Scholar 

  31. D. M. Lipkin, H. Shaffer, F. Adar, and D. R. Clarke, Appl. Phys. Lett. 70, 2550 (1997).

    Google Scholar 

  32. Q. Wen, D. M. Lipkin, and D. R. Clarke, J. Amer. Ceram. Soc. 81, 3345–3348 (1988).

    Google Scholar 

  33. M. W. Brumm and H. J. Grabke, Corros. Sci. 33, 1677–1690 (1992).

    Google Scholar 

  34. A. B. Kulinkin, S. P. Feofilov, and R. I. Zakharchenya, Phys. Solid State 42, 857–860 (2000).

    Google Scholar 

  35. G. Mariotto, E. Cazzanelli, G. Carturan, R. Di Maggio, and P. Scardi, J. Solid State Chem. 86, 263–274 (1990).

    Google Scholar 

  36. H. M. Hindam and W. W. Smeltzer, J. Electrochem. Soc. 127, 1630–1635 (1980).

    Google Scholar 

  37. D. M. Lipkin, D. R. Clarke, M. Hollatz, M. Bobeth, and W. Pompe, Corros. Sci. 39, 231–242 (1997).

    Google Scholar 

  38. H. M. Hindam and W. W. Smeltzer, J. Electrochem. Soc. 127, 1622–1630 (1980).

    Google Scholar 

  39. C. A. Barrett, Oxid. Met. 30, 361–390 (1988).

    Google Scholar 

  40. P. Homma, H. M. Hindam, Y. Pyun, and W. W. Smeltzer, Oxid. Met. 17, 223–233 (1982).

    Google Scholar 

  41. B. Lustman and R. F. Mehl, Trans. AIME 45, 256 (1941).

    Google Scholar 

  42. T. N. Rhodin, Advan. Catal. 5, 39 (1953).

    Google Scholar 

  43. F. W. Young, Jr., J. V. Cathcart, and A. T. Gwathmey, Acta Met. 4, 145 (1956).

    Google Scholar 

  44. J. Benard and J. Talbot, C.R. Acad. Sci. 225, 411 (1948).

    Google Scholar 

  45. E. Yoda and B. M. Siegel, J. Appl. Phys. 34, 1512 (1963).

    Google Scholar 

  46. A. T. Gwathmey and K. R. Lawless, The Surface Chemistry of Metals and Semiconductors (Wiley, New York, 1960), p. 483.

    Google Scholar 

  47. J. V. Laukonis and R. V. Coleman, J. Appl. Phys. 30, 1364 (1959).

    Google Scholar 

  48. P. B. Sewell and M. Cohen, J. Electrochem. Soc. 111, 501 (1964).

    Google Scholar 

  49. P. B. Sewell and M. Cohen, J. Electrochem. Soc. 111, 508 (1964).

    Google Scholar 

  50. D. Renusch, G. Muralidharan, S. Uran, M. Grimsditch, B. W. Veal, J. K. Wright, and R. L. Williamson, Oxid. Met. 53, 171–191 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uran, S., Grimsditch, M., Veal, B.W. et al. Optical Investigation of the Effects of Substrate Orientation on Oxidation of Single Crystal β-NiAl. Oxidation of Metals 56, 551–569 (2001). https://doi.org/10.1023/A:1012501720653

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012501720653

Navigation