Skip to main content
Log in

H2O2 Sensors of Lungs and Blood Vessels and Their Role in the Antioxidant Defense of the Body

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This paper considers the composition and function of sensory systems monitoring H2O2 level by the lung neuroepithelial cells and carotid bodies. These systems are localized in the plasma membrane of the corresponding cells and are composed of O 2 -generating NADPH-oxidase and an H2O2-activated K+ channel. This complex structure of the H2O2 sensors is probably due to their function in antioxidant defense. By means of these sensors, an increase in the H2O2 level in lung or blood results in a decrease in lung ventilation and constriction of blood vessels. This action lowers the O2 flux to the tissues and, hence, intracellular [O2]. The [O2] decrease, in turn, inhibits intracellular generation of reactive oxygen species. The possible roles of such systems under normal conditions (e.g., the effect of O 2 in air) and in some pathologies (e.g., pneumonia) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Skulachev, V. P. (1995) Mol. Biol. (Moscow), 29, 709–715.

    Google Scholar 

  2. Skulachev, V. P. (2000) Oxygen and Programmed Death Phenomenon. First Severin Lecture [in Russian], Russian Biochemical Society, Moscow.

    Google Scholar 

  3. Skulachev, V. P. (1999) Mol. Asp. Med., 20, 139–184.

    Google Scholar 

  4. Skulachev, V. P. (1994) Biochemistry (Moscow), 59, 1433–1434.

    Google Scholar 

  5. Skulachev, V. P. (1996) Quart. Rev. Biophys., 29, 169–202.

    Google Scholar 

  6. Lopez-Barneo, J. (1994) Trends Neurosci., 17, 133–134.

    Google Scholar 

  7. Fu, X. W., Wang, D., Nurse, C. A., Dinauer, M. C., and Cutz, E. (2000) Proc. Natl. Acad. Sci. USA, 97, 4374–4379.

    Google Scholar 

  8. Wang, D., Youngson, C., Wong, V., Yeger, H., Dinauer, M. C., de Miera, E. V.-S., Rudy, B., and Cutz, E. (1996) Proc. Natl. Acad. Sci. USA, 93, 13182–13187.

    Google Scholar 

  9. Youngson, C., Nurse, C., Yeger, H., and Cutz, E. (1993) Nature, 365, 153–155.

    Google Scholar 

  10. Wyatt, C. N., Wright, C., Bee, D., and Peers, C. (1995) Proc. Natl. Acad. Sci. USA, 92, 295–299.

    Google Scholar 

  11. Jones, O. T. G., and Hancock, J. T. (2000) in Free Radicals and Inflammation Winyard, P. G., Blake, D. R., and Evans, C. H., eds.) Birkhauser Verlag, Basel, pp. 19–44.

    Google Scholar 

  12. Hou, S., Larsen, R. W., Boudko, D., Rilley, C. W., Karatan, E., Zimmer, M., Ordal, G. W., and Alam, M. (2000) Nature, 403, 540–543.

    Google Scholar 

  13. Semenza, G. (1999) Cell, 98, 281–284.

    Google Scholar 

  14. Duchen, M. R. (1999) J. Physiol., 516, 1–17.

    Google Scholar 

  15. Wenger, R. H. (2000) J. Exp. Biol., 203, 1253–1263.

    Google Scholar 

  16. Li, W.-G., Miller, F. J., Jr., Zhang, H. J., Spitz, D. R., Oberley, L. W., and Weintraub, N. L. (2001) J. Biol. Chem., 276, 29251–29256.

    Google Scholar 

  17. Akaike, T., Suga, M., and Maeda, H. (1998) Proc. Soc. Exp. Biol. Med., 217, 64–73.

    Google Scholar 

  18. Akaike, T., Ando, M., Oda, T., Doi, T., Ijiri, S., Araki, S., and Maeda, H. (1990) J. Clin. Invest., 85, 739–745.

    Google Scholar 

  19. Maeda, H., and Akaike, T. (1998) Biochemistry (Moscow), 63, 854–865.

    Google Scholar 

  20. Skulachev, V. P. (1998) Biochemistry (Moscow), 63, 1438–1440.

    Google Scholar 

  21. Gazdar, A. F., Helman, L. J., Israel, M. A., Russel, E. K., Linnoila, R. I., Mulshine, J. L., Schuller, H. M., and Park, J. G. (1988) Cancer Res., 48, 4078–4082.

    Google Scholar 

  22. Moody, T. W., Pert, C. B., Gazdar, A. F., Carney, D. N., and Minna, J. D. (1981) Science, 214, 1246–1248.

    Google Scholar 

  23. Schuller, H. M. (1991) Exp. Lung Res., 17, 837–852.

    Google Scholar 

  24. Goldstein, N. I., and Arshavskaya, T. V. (1997) Z. Naturforsch., 52c, 396–404.

    Google Scholar 

  25. Norman, G. E. (2001) Biokhimiya, 66, 123–126.

    Google Scholar 

  26. Meredith, M. (1991) J. Steroid Biochem. Mol. Biol., 39, 601–614.

    Google Scholar 

  27. Berliner, D. L., Monti-Bloch, L., Jennings-White, C., and Diaz-Sanchez, V. (1996) J. Steroid Biochem. Mol. Biol., 58, 259–265.

    Google Scholar 

  28. Belyakov, V. A., Burlakova, E. B., Vasil'ev, R. F., Arkhipova, G. V., Fedotova, I. B., and Chernyavskaya, L. I. (1994) Dokl. RAN, 336, 124–126.

    Google Scholar 

  29. Belyakov, V. A., Vasil'ev, R. F., Trofimov, A. V., and Fedorova, G. F. (1997) in Free Radicals in Biology and Environment (Minisci, F., ed.) Kluwer Academic Publishers, Dordrecht, pp. 233–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skulachev, V.P. H2O2 Sensors of Lungs and Blood Vessels and Their Role in the Antioxidant Defense of the Body. Biochemistry (Moscow) 66, 1153–1156 (2001). https://doi.org/10.1023/A:1012489131436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012489131436

Navigation