Skip to main content
Log in

The effect of stress triaxiality on tensile behavior of cavitating specimens

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A force-equilibrium approach was utilized to simulate the tensile behavior of sheet specimens under cavitating conditions. Unlike previous work, the current model incorporated the effect of stress state on the cavity growth rate parameter η. It was found that stress triaxiality that develops after quasistable deformation has a relatively small effect on η. Thus, at a given level of true strain, the increased value of η leads to higher cavity volume fraction inside the specimen. Simulation results revealed that tensile elongation is not affected by the higher cavity growth rate parameter when failure is localization controlled; however, in cases in which failure is fracture (cavitation) controlled, the overall elongation decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Bridgman, in “Studies in Large Plastic Flow and Fracture” (McGraw-Hill, New York, NY, 1952) p. 36.

    Google Scholar 

  2. S. L. Semiatin, A. K. Ghosh and J. J. Jonas, Metall. Trans. A 16A (1985) 2039.

    Google Scholar 

  3. J. Lian and M. Suery, Mater. Sci. Technol. 2 (1986) 1093.

    Google Scholar 

  4. P. D. Nicolaou, S. L. Semiatin and C. M. Lombard, Metall. Mater. Trans. A 27A (1996) 3112.

    Google Scholar 

  5. M. J. Stowell, in“Superplastic Forming of Structural Alloys,” edited by N. E. Paton and C. H. Hamilton (TMS-AIME, Warrendale, PA, USA, 1982) p. 321.

    Google Scholar 

  6. J. R. Rice and D. M. Tracey, J. Mech. Phys. Solids 17 (1969) 201.

    Google Scholar 

  7. J. Pilling and N. Ridley, Acta Metall. 34 (1986) 669.

    Google Scholar 

  8. B. Budianski, J. W. Hutchinson and S. Slutsky, in “The Rodney Hill 60th Anniversary Volume,” edited by H. G. Hopkins and M. J. Sewell (Pergamon Press, Oxford, England, 1982) p. 13.

    Google Scholar 

  9. M. J. Stowell, Metal Sci. 14 (1980) 267.

    Google Scholar 

  10. A. C. F. Cocks and M. F. Ashby, ibid. 16 (1982) 465.

    Google Scholar 

  11. C. M. Lombard, R. L. Goetz and S. L. Semiatin, Metall. Trans. A 24A (1993) 2039.

    Google Scholar 

  12. P. D. Nicolaou and S. L. Semiatin, Scripta Mater. 36 (1997) 83.

    Google Scholar 

  13. C. M. Lombard, A. K. Ghosh and S. L. Semiatin, in “Advances in the Science and Technology of Titanium Alloy Processing,” edited by I. Weiss, R. Srinivasan, P. J. Bania, D. Eylon and S. L. Semiatin (The Minerals, Metals, and Materials Society, Warrendale, PA, 1996) p. 161.

    Google Scholar 

  14. P. D. Nicolaou and S. L. Semiatin, Metall. Mater. Trans. A 27A (1996) 3675.

    Google Scholar 

  15. L. Weber, M. Kouzeli, C. San Marchi and A. Mortensen, Scripta Mater. 41 (1999) 549.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolaou, P.D., Semiatin, S. The effect of stress triaxiality on tensile behavior of cavitating specimens. Journal of Materials Science 36, 5155–5159 (2001). https://doi.org/10.1023/A:1012485510150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012485510150

Keywords

Navigation