Biologia Plantarum

, Volume 44, Issue 3, pp 417–421 | Cite as

An Antifungal Protein Purified from Pearl Millet Seeds Shows Sequence Homology to Lipid Transfer Proteins

  • R. Velazhahan
  • R. Radhajeyalakshmi
  • R. Thangavelu
  • S. Muthukrishnan


In the course of a search for antifungal proteins from plant seeds, we observed inhibition of mycelial growth of Trichoderma viride with extracts of pearl millet. We have identified several proteins with antifungal properties in the seeds of pearl millet. One of these proteins has been purified to homogeneity and characterized. The purified protein has a molecular mass of 25 kDa. The N-terminal sequence of the protein (25 residues) shows homology to non-specific lipid transfer proteins (LTPs) of cotton, wheat and barley. The purified LTP inhibited mycelial growth of T. viride and the rice sheath blight fungus, Rhizoctonia solani in vitro.

pathogenesis-related protein Pennisetum glaucum Rhizoctonia solani Trichoderma viride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anuratha, C.S., Huang, J.K., Pingali, A., Muthukrishnan, S.: Isolation and characterization of a chitinase and its cDNA clone from rice.-J. Plant Biochem. Biotechnol. 1: 5–10, 1992.Google Scholar
  2. Arondel, V., Vergnolle, C., Tchang, F., Kader, J.C.: Bifuncational lipid-transfer: Fatty acid-binding proteins in plants.-Mol. cell. Biochim. 98: 49–56, 1990.Google Scholar
  3. Bernhard, W.R., Thoma, S., Botella, J., Somerville, C.R.: Isolation of a cDNA clone for spinach lipid transfer protein and evidence that the protein is synthesized by the secretory pathway.-Plant Physiol. 95: 164–170, 1991.Google Scholar
  4. Bi, Y.M., Cammue, B.P.A., Goodwin, P.H., Krishna Raj, S., Saxena, P.K.: Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1.-Plant Cell Rep. 18: 835–840, 1999.Google Scholar
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.Google Scholar
  6. Breu, V., Guerbette, F., Kader, J.C., Kannangara, C., Svensson, B., von Wettstein-Knowles, P.: A 10 kD barley basic protein transfers phosphatidylcholine from liposomes to mitochondria.-Carlsberg Res. Commun. 54: 1–84, 1989.Google Scholar
  7. Broekaert, W.F., Cammue, B.P.A., De Bolle, M.F.C., Thevissen, K., De Sambianx, G.W., Osborn, R.W.: Antimicrobial peptides from plants.-Crit. Rev. Plant Sci. 16: 297–323, 1997.Google Scholar
  8. Cammue, B.P.A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I.J., Proost, P., Van Damme, J., Osborn, R.W., Guerbette, F., Kader, J.C., Broekaert, W.F.: A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins.-Plant Physiol. 109: 445–455, 1995.Google Scholar
  9. Carmona, M.J., Hernandez-Lucas, C., San Martin, C., Gonzalez, P., Garcia-Olmedo, F.: Subcellular localization of type I thionins in the endosperm of wheat and barley.-Protoplasma 173: 1–7, 1993.Google Scholar
  10. Choi, D.W., Song, J.Y., Oh, M.H., Lee, J.S., Moon, J., Suh, S.W., Kim, S.G.: Isolation of a root-specific cDNA encoding a ns-LTP-like protein from the roots of bean (Phaseolus vulgaris L.) seedlings.-Plant mol. Biol. 30: 1059–1066, 1996.Google Scholar
  11. Clark, A.M., Bohnert, H.J.: Cell-specific expression of genes of the lipid transfer protein family from Arabidopsis thaliana.-Plant Cell Physiol. 40: 69–76, 1999.Google Scholar
  12. Davy, A., Svendsen, I., Bech, L., Simpson, D.J., Cameron-Mills, V.: LTP is not a cysteine endoprotease inhibitor in barley grains.-J. Cereal Sci. 30: 237–244, 1999.Google Scholar
  13. Desormeaux, A., Blochet, J.E., Pezolet, M., Marion, D.: Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the α-helix structure.-Biochim. biophys. Acta 112: 137–152, 1992.Google Scholar
  14. Fleming, A.J., Mandel, T., Hofman, S., Sterk, P., De Vries, S.C., Kuhlemeier, C.: Expression pattern of a tobacco lipid transfer protein gene within the shoot apex.-Plant J. 2: 855–862, 1992.Google Scholar
  15. Garcia-Garrido, J.M., Menossi, M., Puigdomenech, P., Martinez-Izquierdo, J.A., Delseny, M.: Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice.-FEBS Lett. 428: 193–199, 1998.Google Scholar
  16. Girbes, T., Ferreras, J.M., Iglesias, R., Citores, L., de Torre, C., Carbajales, M.L., Jimenez, P., de Benito, F.M., Munoz, R.: Recent advances in the uses and applications of ribosome-inactivating proteins from plants.-Cell. mol. Biol. 42: 461–471, 1996.Google Scholar
  17. Jung, H.W., Hwang, B.K.: Isolation, partial sequencing, and expression of pathogenesis-related cDNA genes from pepper leaves infected by Xanthomonas campestris pv. vesicatoria.-Mol. Plant Microbe Interact. 13: 136–142, 2000.Google Scholar
  18. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.-Nature 277: 680–684, 1970.Google Scholar
  19. Leah, R., Tommerup, H., Svendsen, I., Mundy, J.: Biochemical and molecular characterization of three barley seed proteins with antifungal properties.-J. biol. Chem. 266: 1564–1573, 1991.Google Scholar
  20. Mauch, F., Mauch-Mani, B., Boller, T.: Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase.-Plant Physiol. 88: 936–942, 1988.Google Scholar
  21. Molina, A., Garcia-Olmedo, F.: Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins.-Plant J. 4: 983–991, 1993.Google Scholar
  22. Molina, A., Garcia-Olmedo, F.: Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2.-Plant J. 12: 669–675, 1997.Google Scholar
  23. Molina, A., Segura, A., Garcia-Olmedo, F.: Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens.-FEBS Lett. 316: 119–122, 1993.Google Scholar
  24. Neumann, G.M., Condron, R., Thomas, I., Polya, G.M.: Purification and sequencing of a family of wheat lipid transfer protein homologues phosphorylated by plant calcium-dependent protein kinase.-Biochim. biophys. Acta 1209: 183–190, 1994.Google Scholar
  25. Orford, S.J., Timmis, J.N.: Expression of a lipid transfer protein gene family during cotton fibre development.-Biochim. biophys. Acta 1483: 275–284, 2000.Google Scholar
  26. Pelese-Siebenbourg, F., Caelles, C., Kader, J.C., Delseny, M., Puigdomenech, P.: A pair of genes coding for lipid-transfer proteins in Sorghum vulgare.-Gene 148: 305–308, 1994.Google Scholar
  27. Poznanski, J., Sodano, P., Suh, S.W., Lee, J. Y., Ptak, M., Vovelle, F.: Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins.-Eur. J. Biochem. 259: 692–708, 1999.Google Scholar
  28. Radhajeyalakshmi, R., Meena, B., Thangavelu, R., Deborah, S.D., Vidhyasekaran, P., Velazhahan, R.: A 45-kDa chitinase purified from pearl millet (Pennisetum glaucum (L.) R. Br.) shows antifungal activity.-J. Plant Dis. Protect. 107: in press, 2001.Google Scholar
  29. Roberts, W.K., Selitrennikoff, C.P.: Isolation and partial characterization of two antifungal proteins from barley.-Biochim. biophys. Acta 880: 161–170, 1986.Google Scholar
  30. Roberts, W.K., Selitrennikoff, C.P.: Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity.-J. gen. Microbiol. 136: 1771–1778, 1990.Google Scholar
  31. Schlumbaum, A., Mauch, F., Vogeli, U., Boller, T.: Plant chitinases are potent inhibitors of fungal growth.-Nature 324: 365–367, 1986.Google Scholar
  32. Segura, A., Moreno, M., Garcia-Olmedo, F.: Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach.-FEBS Lett. 332: 243–246, 1993.Google Scholar
  33. Sohal, A.K., Pallas, J.A., Jenkins, G.I.: The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis.-Plant mol. Biol. 41: 75–87, 1999.Google Scholar
  34. Sterk, P., Booij, H., Schellekens, G.A., Van Kammen, A., De Vries, S.C.: Cell-specific expression of the carrot EP2 lipid transfer protein gene.-Plant Cell 3: 907–921, 1991.Google Scholar
  35. Swegle, M., Kramer, K.J., Muthukrishnan, S.: Properties of barley seed chitinases and release of embryo-associated isoforms during early stages of imbibition.-Plant Physiol. 99: 1009–1014, 1992.Google Scholar
  36. Tchang, F., This, P., Stiefel, V., Arondel, V., Morch, M.D., Pages, M., Puigdomenech, P., Grellet, F., Delseny, M., Bouillon, P., Huet, J.C., Guerbette, F., Beauvais-Cante, F., Duranton, H., Pernollet, J.C., Kader, J.C.: Phospholipid transfer protein: Full-length cDNA and amino acid sequence in maize. Amino acid sequence homologies between plant phospholipid transfer proteins.-J. biol. Chem. 263: 16849–16855, 1988.Google Scholar
  37. Terras, F.R.G., Goderis, I.J., Van Leuven, F., Vanderleyden, J., Cammue, B.P.A., Broekaert, W.F.: In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins.-Plant Physiol. 100: 1055–1058, 1992a.Google Scholar
  38. Terras, F.R.G., Schoofs, H., De Bolle, M.F.C., Van Leuven, F., Rees, S.B., Vanderleyden, J., Cammue, B.P.A., Broekaert, W.F.: Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds.-J. biol. Chem. 267: 15301–15309, 1992b.Google Scholar
  39. Thevissen, K., Ghazi, A., De Samblanx, G.W., Brownlee, C., Osborn, R.W., Broekaert, W.F.: Fungal membrane responses induced by plant defensins and thionins.-J. biol. Chem. 271: 15018–15025, 1996.Google Scholar
  40. Trevino, M.B., O'Connell, M.A.: Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression.-Plant Physiol. 116: 1461–1468, 1998.Google Scholar
  41. Van Loon, L.C., Van Strien, E.A.: The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins.-Physiol. mol. Plant Pathol. 55: 85–97, 1999.Google Scholar
  42. Vidhyasekaran, P., Ruby Ponmalar, T., Samiyappan, R., Velazhahan, R., Vimala, R., Ramanathan, A., Paranidharan, V., Muthukrishnan, S.: Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen.-Phytopathology 87: 1258–1263, 1997.Google Scholar
  43. Vigers, A.J., Roberts, W.K., Selitrennikoff, C.P.: A new family of plant antifungal proteins.-Mol. Plant Microbe Interact. 4: 315–323, 1991.Google Scholar
  44. Vignols, F., Lund, G., Pammi, S., Tremousaygue, D., Grellet, F., Kader, J.C., Puigdomenech, P., Delseny, M.: Characterization of a rice gene coding for a lipid transfer protein.-Gene 142: 265–270, 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • R. Velazhahan
    • 1
  • R. Radhajeyalakshmi
    • 1
  • R. Thangavelu
    • 1
  • S. Muthukrishnan
    • 2
  1. 1.Department of Plant PathologyTamil Nadu Agricultural UniversityCoimbatore-India
  2. 2.Department of BiochemistryKansas State UniversityManhattanUSA

Personalised recommendations