Skip to main content
Log in

Physical Interpretation of Fracture Characteristics Determined in Testing Charpy Specimens by Impact Bending

  • Published:
Strength of Materials Aims and scope

Abstract

We demonstrate the possibility of using new physically substantiated characteristics of toughness of the metal and the embrittling action of a stress concentrator suggested earlier for the analysis of brittle fracture of standard Charpy specimens. We describe a procedure for the evaluation of the degree of embrittlement of a metal in impact tests. It is shown that the threshold values of the specific work of fracture KCV used to reject the metal must be corrected depending on the level of strength of steel. For low-, medium-, and high-strength steels, we propose physically substantiated threshold values of KCV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. A. Kotrechko, Yu. Ya. Meshkov, G. S. Mettus, and D. I. Nikonenko, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under conditions of stress concentration. Part 3. Toughness of metals and alloys,” Probl. Prochn., No. 1, 72–92 (2000).

  2. G. T. Hahn, “Influence of microstructure on brittle fracture toughness” Met. Trans., 12A, 947–957 (1984).

    Google Scholar 

  3. Yu. Ya. Meshkov, Physical Grounds of Fracture of Steel Structures [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  4. W. Dahl and P. Belche, “Strain diagram” in: W. Dahland and W. Anton (Eds.), Werkstoffkunde Eisen und Stahl. Teil 1: Grundlagen der Festigkeit, der Zähigkeit und des Bruchs [Russian translation], Metallurgiya, Moscow (1986), pp. 51–133.

    Google Scholar 

  5. I. K. Pokhodnya, V. I. Shvachko, A. V. Shiyan, et al., “On the nature of brittle fracture of structural steels and their welded joints subjected to tests by impact bending” Avtomat. Svarka, No. 5, 1–4 (1988).

    Google Scholar 

  6. S. A. Kotrechko, Yu. Ya. Meshkov, and G. S. Mettus, “On the physical nature of strength of bcc metals within the temperature range of the ductile-brittle transition” Metallofiz. Noveish. Tekhnol., 16, No. 11, 31–34 (1994).

    Google Scholar 

  7. S. A. Kotrechko, Yu. Ya. Meshkov, and G. S. Mettus, “Mechanics and physics of quasibrittle fracture of polycrystalline metals under conditions of stress concentration. Part 1. Experimental regularities,” Probl. Prochn., No. 4, 5–16 (1997).

  8. L. A. Kopel'man, “Comparison of the results of testing of low-carbon steel by impact bending and uniaxial tension,” Avtomat. Svarka, No. 12, 7–11 (1975).

  9. A. R. Resenfield and G. T. Hahn, Numerical descriptions of the ambient low-temperature and high-strain rate flow and fracture behavior of plain carbon steel, Trans. ASME, 59, 962–980 (1966).

    Google Scholar 

  10. S. A. Kotrechko, Yu. Ya. Meshkov, D. I. Nikonenko, et al., “Impact strength of shipbuilding steels and estimation of their susceptibility to brittle fracture,” Metalloved. Term. Obrab. Met., No. 3, 27–30 (1997).

  11. Yu. Ya. Meshkov and T. N. Serditova, Fracture of Deformed Steel [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotrechko, S.A., Meshkov, Y.Y. Physical Interpretation of Fracture Characteristics Determined in Testing Charpy Specimens by Impact Bending. Strength of Materials 33, 356–361 (2001). https://doi.org/10.1023/A:1012460627839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012460627839

Navigation