Skip to main content
Log in

Prediction of Ductile Fracture Toughness for Neutron-Irradiated Reactor Pressure-Vessel Steels. Part 1

  • Published:
Strength of Materials Aims and scope

Abstract

We discuss the theoretical background of modeling the influence of neutron irradiation on the upper-shelf level of the \(K_{{\text{I}}c} \left( T \right)\) relation. The modeling involves a local criterion and a model for ductile fracture proposed by the authors earlier. A physical interpretation of the influence of irradiation on the mechanisms that control ductile fracture is presented. The parameters of the model that are sensitive to neutron irradiation are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. M. Beremin, “Cavity formation from inclusions in ductile fracture of A508 steel,” Met. Trans., 12A (5), 723–731 (1981).

    Google Scholar 

  2. D. R. Curran, L. Seaman, and A. Shockey, “Microstructure and fracture dynamics,” in: Shock Waves and High-Strain-Rate Phenomena in Metals (Eds. M. A. Meyers and L. E. Murr), Plenum Press, New York (1980), pp. 387–412.

    Google Scholar 

  3. C. A. Hippsley and S. G. Druce, “The influence of strength and phosphorus segregation on the ductile fracture mechanism in a Ni-Cr steel,” Acta Met., 34, 1215–1227 (1986).

    Google Scholar 

  4. H.-Chr. Zeislmair, “Factors affecting fracture toughness,” in: Werkstoffkunde Eisen und Stahl. Teil I: Grundlagen der Festigkeit, der Zähigkeit und des Bruchs, Verlag Stahleisen mbH, Düsseldorf (1983), pp. 332–369.

    Google Scholar 

  5. J. F. Knott, “Micromechanisms of fibrous crack extension in engineering alloys,” Metal Sci. 14, 327–336 (1980).

    Google Scholar 

  6. N. N. Alekseenko, A. D. Amaev, I. V. Gorynin, and V. A. Nikolaev, Radiation Damage of Water-Moderated Water-Cooled Reactor Pressure-Vessel Steels [in Russian], Énergoatomizdat, Moscow (1981).

    Google Scholar 

  7. S. H. Bush, “Structural materials for nuclear power plants,” J. Test. Eval., 2, 435–462 (1974).

    Google Scholar 

  8. J. R. Hawthorne, “Radiation embrittlement,” in: Embrittlement of Engineering Alloys, Academic Press, New York (1983).

    Google Scholar 

  9. R. Havel, M. Vacek, and M. Brumovsky, “Fracture properties of irradiated A533B, C1.1, A508, C1.3, and 15Ch2NMFAA reactor pressure-vessel steels,” in: Radiation Embrittlement of Nuclear Reactor Pressure-Vessel Steels: An International Review (Fourth Volume), ASTM STP 1172 (1993), pp. 163–171.

  10. D. J. Alexander, J. E. Pawel, M. L. Grossbeck, et al., “Fracture toughness of irradiated candidate materials for iter first wall/blanket structures,” in: Effects of Radiation on Materials (17th Int. Symp.), ASTM STP 1270 (1996), pp. 945–970.

  11. A. L. Gurson, Continuun theory of ductile rupture by void nucleation and growth: Part 1. Yield criteria and flow rules for porous ductile media,” J. Eng. Mater. Tech., 99, 213 (1977).

    Google Scholar 

  12. V. Tvergaard and A. Needleman, “Analysis of the cup-cone fracture in a round tensile bar,” Acta Met., 32, 157–169 (1984).

    Google Scholar 

  13. G. Rousselier, “Ductile fracture models and their potential in local approach of fracture,” Nucl. Eng. Des., 105, 97–111 (1987).

    Google Scholar 

  14. W. Schmitt, E. Keim, G. Nagel, and D. Z. Sun, “Application of local approach methods for nuclear installations,” in: Trans. of the 14th Int. Conf. on SMIRT (Lyon, France), 4 (1997), pp. 634–653.

    Google Scholar 

  15. B. Z. Margolin, G. P. Karzov, V. A. Shvetsova, and V. I. Kostylev, “Modeling of transcrystalline and intercrystalling fracture by void nucleation and growth,” Fatigue Fract. Eng. Mater. Struct., 21, 123–137 (1998).

    Google Scholar 

  16. B. Z. Margolin, G. P. Karzov, and V. A. Shvetsova, “Brittle fracture of nuclear pressure-vessel steels. Part II. Prediction of fracture toughness,” J. Pres. Ves. Piping, 72, 89–96 (1997).

    Google Scholar 

  17. B. Z. Margolin, A. G. Gulenko, and V. A. Shvetsova, “Probabilistic model for fracture toughness prediction based on the new local fracture criteria,” J. Pres. Ves. Piping, 75, 307–320 (1998).

    Google Scholar 

  18. B. Z. Margolin, A. G. Gulenko, and V. A. Shvetsova, “Improved probabilistic model for fracture toughness prediction for nuclear pressure vessel steels,” J. Pres. Ves. Piping, 75, 843–855 (1998).

    Google Scholar 

  19. B. Z. Margolin, V. A. Shvetsova, and A. G. Gulenko, “Brittle fracture toughness prediction for neutronirradiated reactor pressure vessel steels. Part 1,” Probl. Prochn., No. 2, 5–19 (2001).

    Google Scholar 

  20. J. R. Rice and D. M. Tracey, “On ductile enlargement of voids in triaxial stress fields,” J. Mech. Phys. Solids, 17 (3), 201–217 (1969).

    Google Scholar 

  21. L. F. Coffin and H. C. Rogers, “Influence of pressure on the structural damage in metal forming processes,” J. Appl. Mech., 60 (4), 672–686 (1967).

    Google Scholar 

  22. V. V. Novozhilov and Yu. I. Kadashevich, Microstresses in Structural Materials [in Russian], Mashinostroenie, Leningrad (1990).

    Google Scholar 

  23. W. Herrman, “Constitutive equation for the dynamic compaction of ductile porous materials,” J. Appl. Mech., 40, 2490–2506 (1969).

    Google Scholar 

  24. L. M. Kachanov, Fundamentals of the Theory of Plasticity [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  25. G. P. Karzov, B. Z. Margolin, and V. A. Shvetsova, Physico-Mechanical Modeling of Fracture Processes [in Russian], Politekhnika, St. Petersburg (1993).

    Google Scholar 

  26. B. Z. Margolin and V. I. Kostylev, “Analysis for the validity of the J-intergral for media with voids,” Fatigue Fract. Eng. Mater. Struct., 22, 967–974 (1999).

    Google Scholar 

  27. J. W. Hancock and A. C. McKenzi, “On the mechanism of ductile failure in high-strength steel subjected to multi-axial stress state,” J. Mech. Phys. Solids, 24, 147–159 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolin, B.Z., Kostylev, V.I. Prediction of Ductile Fracture Toughness for Neutron-Irradiated Reactor Pressure-Vessel Steels. Part 1. Strength of Materials 33, 318–324 (2001). https://doi.org/10.1023/A:1012448325114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012448325114

Navigation