Skip to main content
Log in

The influence of poly(acrylic acid) molar mass and concentration on the properties of polyalkenoate cements Part I Compressive strength

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of poly(acrylic acid), PAA molar mass, concentration and glass volume fraction were investigated on the compressive strength of polyalkenoate cements after ageing for 1, 7 and 28 days in water at 37°C. The compressive strength increased with the molar mass of the polyacid. The increase in compressive strength with molar mass was greater at higher PAA concentrations. Increasing the polyacid concentration generally increased the compressive strength, until PAA concentrations greater than 50% m/m were achieved. Increasing the glass volume fraction had little influence on the compressive strength of cements made with low PAA concentrations, however the compressive strength increased with glass volume fraction for cements that had a high PAA concentration. Increasing the ageing time of the cement prior to testing generally resulted in an increase in compressive strength. However the influence of ageing time was greater in cements made with high PAA concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Wilson and J. W. Mclean, “Glass-lonomer Cement” (Quintessence Books, Chigago, Illinois, 1988).

    Google Scholar 

  2. R. T. Ramsden, R. C. D. Herdman and R. H. Lye, J. Laryngol. Otol. 106 (1992) 949.

    Google Scholar 

  3. L. M. Jonck and C. J. Grobbelaar, Clinical Materials 6 (1990) 323.

    Google Scholar 

  4. H. Aoki, US Patent no. 4,542, 167 (1985).

  5. Y. Matsuya, J. M. Antonucci, S. Matusuya and L. C. Chow, Dent. Mater. 12 (1996) 2.

    Google Scholar 

  6. K. S. Tenhuisen and P. W. Brown, J. Dent. Res. 73 (1994) 598.

    Google Scholar 

  7. M. Rakugi, T. Komura, T. Ootsuchi and S. Sobue, J. Dent. Mater. 7 (1988) 100.

    Google Scholar 

  8. S. Matusuya, Y. Matusuya and M. Ohta, Abstract 1442 American Association of Dental Research (1998).

  9. A. Sullivan and R. G. Hill, J. Mater. Sci. Lett. 19 (2000) 323.

    Google Scholar 

  10. Idem., J. Mater. Sci. 35 (2000) 1125.

    Google Scholar 

  11. G. Lewis, J. Mat. Edu. 12 (1989) 1.

    Google Scholar 

  12. S. N. White and Y. Zhaokua, J. Prosthet. Dent. 69 (1993) 568.

    Google Scholar 

  13. J. W. Nicholson and F. Abiden, Biomaterials 18 (1997) 59.

    Google Scholar 

  14. J. A. Williams and R. W. Billington, J. Oral Rehab. 18 (1991) 163.

    Google Scholar 

  15. M. A. Cattani-Lorrente, C. G. Godin and J. Meyer, Dent. Mater. 10 (1994) 37.

    Google Scholar 

  16. R. Guggenberger, R. May and K. P. Stefan, Biomaterials 19(1998) 479.

    Google Scholar 

  17. V. H. W. Khou-Liu, H. M. Anstice and G. J. Pearson, J. Dent. 27 (1999) 351.

    Google Scholar 

  18. S. CRISP, B. G. LEWIS and A. D. WILSON, ibid. 4 (1976) 162.

    Google Scholar 

  19. A. D. Wilson, H. J. Prosser, S. Crisp, B. G. Lewis and S. A. Merson, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 263.

    Google Scholar 

  20. G. Pearson and A. Atkinson, Biomaterials 12 (1991) 169.

    Google Scholar 

  21. B. Fennell and R. Hill, Dental Materials 14 (1998) 358.

    Google Scholar 

  22. C. H. Lloyd and L. Mitchell, J. Oral Rehab. 11 (1984) 257.

    Google Scholar 

  23. M. Goldman, J. Biomed. Mater. Res. 19 (1985) 771.

    Google Scholar 

  24. R. G. Hill, C. P. Warrens and A. D. Wilson, J. Mater. Sci. 4 (1989) 363.

    Google Scholar 

  25. R. G. Hill, ibid. 28 (1993) 3851.

    Google Scholar 

  26. S. Griffin and R. Hill, ibid. 33 (1998) 5383.

    Google Scholar 

  27. E. D. E. Barra and R. Hill, ibid. 33 (1998) 5487.

    Google Scholar 

  28. D. E. Barra, Ph.D. Thesis, University of Limerick.

  29. N. H. Ray, “Inorganic Polymers” (Academic Press, London, 1978).

    Google Scholar 

  30. ISO 7489: 1986, “Dental Glass Polyalkenoate Cements.”

  31. A. D. WILSON, R. G. HILL, C. P. WARRENS and B. G. LEWIS, J. Dent. Res. 68 (1989) 89.

    Google Scholar 

  32. S. CRISP, B. G. LEWIS and A. D. WILSON, ibid. 4 (1976) 142.

    Google Scholar 

  33. E. A. WASSON and J. W. NICHOLSON, J. Dent. Res. 72 (1993) 481.

    Google Scholar 

  34. S. CRISP, B. G. LEWIS and A. D. WILSON, J. Dent. 5 (1977) 51.

    Google Scholar 

  35. B. FENNEL and R. G. HILL, Part III, submitted for publication.

  36. ISO 9917: 1997, “Dental Glass Polyalkenoate Cements.”

  37. B. FENNEL and R. G. HILL, Part II, submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fennell, B., Hill, R.G. The influence of poly(acrylic acid) molar mass and concentration on the properties of polyalkenoate cements Part I Compressive strength. Journal of Materials Science 36, 5193–5202 (2001). https://doi.org/10.1023/A:1012445928805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012445928805

Keywords

Navigation