, Volume 38, Issue 4, pp 483–491 | Cite as

Imaging of the Blue, Green, and Red Fluorescence Emission of Plants: An Overview

  • C. Buschmann
  • G. Langsdorf
  • H.K. Lichtenthaler


An overview is given on the fluorescence imaging of plants. Emphasis is laid upon multispectral fluorescence imaging in the maxima of the fluorescence emission bands of leaves, i.e., in the blue (440 nm), green (520 nm), red (690 nm), and far-red (740 nm) spectral regions. Details on the origin of these four fluorescence bands are presented including emitting substances and emitting sites within a leaf tissue. Blue-green fluorescence derives from ferulic acids covalently bound to cell walls, and the red and far-red fluorescence comes from chlorophyll (Chl) a in the chloroplasts of green mesophyll cells. The fluorescence intensities are influenced (1) by changes in the concentration of the emitting substances, (2) by the internal optics of leaves determining the penetration of excitation radiation and partial re-absorption of the emitted fluorescence, and (3) by the energy distribution between photosynthesis, heat production, and emission of Chl fluorescence. The set-up of the Karlsruhe multispectral fluorescence imaging system (FIS) is described from excitation with UV-pulses to the detection with an intensified CCD-camera. The possibilities of image processing (e.g., formation of fluorescence ratio images) are presented, and the ways of extraction of physiological and stress information from the ratio images are outlined. Examples for the interpretation of fluorescence images are given by demonstrating the information available for the detection of different developmental stages of plant material, of strain and stress of plants, and of herbicide treatment. This novel technique can be applied for near-distance screening or remote sensing.

photosynthetic activity quality control remote sensing strain stress detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babani, F., Lichtenthaler, H.K.: Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualised by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios.-J. Plant Physiol. 148: 555-566, 1996.CrossRefGoogle Scholar
  2. Balota, M., Sowinska, M., Buschmann, C., Lichtenthaler, H.K., Heisel, F., Babani, F.: Fluorescence techniques as suitable methods to discriminate wheat genotypes under drought and high temperature condition.-SPIE 3707: 103-113, 1999.Google Scholar
  3. Björn, L.O., Forsberg, A.S.: Imaging by delayed light emission (phytoluminography) as a method for detecting damage to the photosynthetic system.-Physiol. Plant. 47: 215-222, 1979.CrossRefGoogle Scholar
  4. Blaich, R., Bachmann, O., Baumberger, I.: Studies of photosynthesis inhibition by phytoluminography.-Z. Naturforsch. 37c: 452-457, 1982.Google Scholar
  5. Buschmann, C.: Induction kinetics of heat emission before and after photoinhibition in cotyledons of Raphanus sativus.-Photosynth. Res. 14: 229-240, 1987.CrossRefPubMedGoogle Scholar
  6. Buschmann, C., Lichtenthaler, H.K.: Principles and characteristics of multi-colour fluorescence imaging of plants.-J. Plant Physiol. 152: 297-314, 1998.CrossRefGoogle Scholar
  7. Buschmann, C., Schrey, H.: Fluorescence induction kinetics of green and etiolated leaves by recording the complete in-vivo emission spectra.-Photosynth. Res. 1: 233-241, 1981.CrossRefPubMedGoogle Scholar
  8. Cerovic, Z.G., Samson, G., Morales, F., Tremblay, N., Moya, I.: Ultraviolet-induced fluorescence for plant monitoring: present state and prospects.-Agronomie: Agr. Environ. 19: 543-578, 1999.CrossRefGoogle Scholar
  9. Chappelle, E.W., Wood, F.M., McMurtrey, J.E., Newcourt, W.W.: Laser-induced fluorescence of green plants. 3: LIF spectral signatures of five major plant types.-Appl. Optics 24: 74-80, 1985.CrossRefGoogle Scholar
  10. Daley, P.F., Raschke, K., Ball, J.T., Berry, J.A.: Topography of photosynthetic activity of leaves obtained from video imaging of chlorophyll fluorescence.-Plant Physiol. 90: 1233-1238, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  11. D'Ambrosio, N., Szabo, K., Lichtenthaler, H.K.: Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown.-Radiat. environ. Biophys. 31: 51-62, 1992.CrossRefPubMedGoogle Scholar
  12. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599-626, 1992.CrossRefGoogle Scholar
  13. Edner, H., Johansson, J., Svanberg, S., Lichtenthaler, H.K., Lang, M., Stober, F., Schindler, C., Björn, L.-O.: Remote multi-colour fluorescence imaging of selected broad-leaf plants.-EARSel Adv. remote Sens. 3: 2-14, 1995.Google Scholar
  14. Edner, H., Johansson, J., Svanberg, S., Wallinder, E.: Fluorescence lidar multicolour imaging of vegetation.-Appl. Optics 33: 2471-2478, 1994.CrossRefGoogle Scholar
  15. Ellenson, J.L., Amundson, R.G.: Delayed light imaging for the early detection of plant stress.-Science 215: 1104-1106, 1982.CrossRefPubMedGoogle Scholar
  16. Fry, S.C.: Phenolic compounds of the primary cell wall and their possible role in the hormonal regulation of growth.-Planta 146: 343-351, 1979.CrossRefPubMedGoogle Scholar
  17. Fry, S.C.: Phenolic components of the primary cell wall.-Biochem. J. 203: 493-504, 1982.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Genty, B., Meyer, S.: Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging.-Aust. J. Plant Physiol. 22: 277-284, 1994.CrossRefGoogle Scholar
  19. Gilroy, S.: Fluorescence microscopy of living plant cells.-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 165-190, 1997.CrossRefPubMedGoogle Scholar
  20. Gitelson, A.A., Buschmann, C., Lichtenthaler, H.K.: Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements.-J. Plant Physiol. 152: 283-296, 1998.CrossRefGoogle Scholar
  21. Goodwin, R.H.: Fluorescent substances in plants.-Annu. Rev. Plant Physiol. 4: 283-304, 1953.CrossRefGoogle Scholar
  22. Hák, R., Lichtenthaler, H.K., Rinderle, U.: Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves.-Radiat. environ. Biophys. 28: 329-336, 1990.CrossRefGoogle Scholar
  23. Harris, P.J., Hartley, R.D.: Detection of bound ferulic acid in cell walls of the gramineae by ultraviolet fluorescence microscopy.-Nature 259: 508-510, 1976.CrossRefGoogle Scholar
  24. Hartley, R.D.: Carbohydrate esters of ferulic acid as components of cell walls of Lolium multiflorum.-Phytochemistry 12: 661-665, 1973.CrossRefGoogle Scholar
  25. Heisel, F., Sowinska, M., Khalili, E., Eckert, C., Miehé, J.A., Lichtenthaler, H.K.: Laser-induced fluorescence imaging for monitoring nitrogen fertilizing treatments of wheat.-SPIE 3059: 10-21, 1997.Google Scholar
  26. Heisel, F., Sowinska, M., Miehé, J.A., Lang, M., Lichtenthaler, H.K.: Detection of nutrient deficiencies of maize by laser induced fluorescence imaging.-J. Plant Physiol. 148: 622-631, 1996.CrossRefGoogle Scholar
  27. Holzwarth, A.R., Wendler, J., Haehnel, W.: Time-resolved picosecond fluorescence spectra of the antenna chlorophylls in Chlorella vulgaris. Resolution of photosystem I fluorescence.-Biochim. biophys. Acta 807: 155-167, 1987.CrossRefGoogle Scholar
  28. Johnson, G.A., Mantha, S.V., Day, T.A.: A spectrofluorometric survey of UV-induced blue-green fluorescence in foliage of 35 species.-J. Plant Physiol. 156: 242-252, 2000.CrossRefGoogle Scholar
  29. Kocsányi, L., Haitz, M., Lichtenthaler, H.K.: Measurement of the laser-induced chlorophyll fluorescence kinetics using a fast acoustooptic device.-In: Lichtenthaler, H.K. (ed.): Applications of Chlorophyll Fluorescence. Pp. 99-107. Kluwer Academic Publ., Dordrecht-Boston-London 1988.Google Scholar
  30. Krause, G.H., Somersalo, S., Zumbusch, E., Weyers, B., Laasch, H.: On the mechanism of photoinhibition in chloroplasts. Relationship between changes in fluorescence and activity of photosystem II.-J. Plant Physiol. 136: 472-479, 1990.CrossRefGoogle Scholar
  31. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991.CrossRefGoogle Scholar
  32. Lang, M., Lichtenthaler, H.K., Sowinska, M., Heisel, F., Miehé, J.A.: Fluorescence imaging of water and temperature stress in plant leaves.-J. Plant Physiol. 148: 613-621, 1996.CrossRefGoogle Scholar
  33. Lang, M., Lichtenthaler, H.K., Sowinska, M., Summ, P., Heisel, F.: Blue, green and red fluorescence signatures and images of tobacco leaves.-Bot. Acta 107: 230-236, 1994.CrossRefGoogle Scholar
  34. Lang, M., Stober, F., Lichtenthaler, H.K.: Fluorescence emission spectra of plant leaves and plant constituents.-Radiat. environ. Biophys. 30: 333-347, 1991.CrossRefPubMedGoogle Scholar
  35. Lichtenthaler, H.K.: The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics.-Photosynthetica 27: 45-55, 1992.Google Scholar
  36. Lichtenthaler, H.K., Babani, F.: Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence.-Plant Physiol. Biochem. 38: (in press), 2000.Google Scholar
  37. Lichtenthaler, H.K., Babani, F., Langsdorf, G., Buschmann, C.: Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging.-Photosynthetica 38: 523-531, 2000.CrossRefGoogle Scholar
  38. Lichtenthaler, H.K., Burkart, S., Schindler, C., Stober, F.: Changes in photosynthetic pigments and in vivo chlorophyll fluorescence parameters under photoinhibitory growth conditions.-Photosynthetica 27: 343-353, 1992b.Google Scholar
  39. Lichtenthaler, H.K., Buschmann, C., Rinderle, U., Schmuck, G.: Application of chlorophyll fluorescence in ecophysiology.-Radiat. environ. Biophys. 25: 297-308, 1986.CrossRefPubMedGoogle Scholar
  40. Lichtenthaler, H.K., Hak, R., Rinderle, U.: The chlorophyll fluorescence ratio F690/F730 in leaves of different chlorophyll content.-Photosynth. Res. 25: 295-298, 1990.CrossRefPubMedGoogle Scholar
  41. Lichtenthaler, H.K., Lang, M., Sowinska, M., Heisel, F., Miehé, J.A.: Detection of vegetation stress via a new high resolution fluorescence imaging system.-J. Plant Physiol. 148: 599-612, 1996.CrossRefGoogle Scholar
  42. Lichtenthaler, H.K., Lang, M., Sowinska, M., Summ, P., Heisel, F., Miehé, J.A.: Uptake of the herbicide diuron (DCMU) as visualized by the fluorescence imaging technique.-Bot. Acta 110: 158-163, 1997.CrossRefGoogle Scholar
  43. Lichtenthaler, H.K., Miehé, J.A.: Fluorescence imaging as a diagnostic tool for plant strees.-Trends Plant Sci. 2: 316-320, 1997.CrossRefGoogle Scholar
  44. Lichtenthaler, H.K., Rinderle, U.: The role of chlorophyll fluorescence in the detection of stress conditions in plants.-CRC crit. Rev. anal. Chem. 19: S29-S85, 1988.CrossRefGoogle Scholar
  45. Lichtenthaler, H.K., Schweiger, J.: Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants.-J. Plant Physiol. 152: 272-282, 1998.CrossRefGoogle Scholar
  46. Lichtenthaler, H.K., Stober, F., Lang, M.: The nature of the different laser-induced fluorescence signatures of plants.-EARSeL Adv. remote Sens. 1: 20-32, 1992a.Google Scholar
  47. Morales, F., Cerovic, Z.G., Moya, I.: Time-resolved blue-green fluorescence of sugar beet (Beta vulgaris L.) leaves. Spectroscopic evidence for the presence of ferulic acid as the main fluorophore of the epidermis.-Biochim. biophys. Acta 1273: 251-262, 1996.CrossRefGoogle Scholar
  48. Morales, F., Cerovic, Z.G., Moya, I.: Time-resolved blue-green fluorescence of sugar beet leaves. Temperature-induced changes and consequences for the potential use of blue-green fluorescence as a signature for remote sensing of plants.-Aust. J. Plant Physiol. 25: 325-334, 1998.CrossRefGoogle Scholar
  49. Nilsson, H.-E.: Remote sensing and image analysis in plant pathology.-Annu. Rev. Phytopathol. 33: 489-527, 1995.CrossRefPubMedGoogle Scholar
  50. Ning, L., Edwards, G.E., Strobel, G.A., Daley, L.S., Callis, J.B.: Imaging fluorometer to detect pathological and physiological change in plants.-Appl. Spectrosc. 49: 1381-1389, 1995.CrossRefGoogle Scholar
  51. Ning, L., Petersen, B.E., Edwards, G.E., Daley, L.S., Callis, J.B.: Recovery of digital information stored in living plant leaf photosynthetic apparatus as fluorescence signals.-Appl. Spectrosc. 51: 1-9, 1997.CrossRefGoogle Scholar
  52. Omasa, K.: Image instrumentation methods of plant analysis.-In: Linskens, H.-F., Jackson, J.F. (ed.): Modern Methods of Plant Analysis. Vol. 11. Pp. 203-243. Springer-Verlag, Berlin 1990.Google Scholar
  53. Omasa, K., Shimazaki, K.-I., Aiga, I., Larcher, W., Onoe, M.: Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves.-Plant Physiol. 84: 748-752, 1987.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Osmond, C.B., Berry, J.A., Balachandran, S., Büchen-Osmond, C., Daley, P.F., Hodgson, R.A.J.: Potential consequences of virus infection for shade-sun acclimation in leaves.-Bot. Acta 103: 226-229, 1990.CrossRefGoogle Scholar
  55. Osmond, C.B., Daley, P.F., Badger, M.R., Lüttge, U.: Chlorophyll fluorescence quenching during photosynthetic induction in leaves of Abutilon striatum Dicks. infected with abutilon mosaic virus, observed with a field-portable imaging system.-Bot. Acta 111: 390-397, 1998.CrossRefGoogle Scholar
  56. Osmond, C.B., Kramer, D., Lüttge, U.: Reversible, water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal response.-Plant Biol. 1: 618-624, 1999a.CrossRefGoogle Scholar
  57. Osmond, C.B., Schwartz, O., Gunning, B.: Photoinhibitory printing on leaves, visualised by chlorophyll fluorescence imaging and confocal microscopy, is due to diminished fluorescence from grana.-Aust. J. Plant Physiol. 26: 717-724, 1999b.CrossRefGoogle Scholar
  58. Oxborough, K., Baker, N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components — calculation of qP and Fv‵/Fm‵ without measuring Fo‵.-Photosynth. Res. 54: 135-142, 1997a.CrossRefGoogle Scholar
  59. Oxborough, K., Baker, N.R.: An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization.-Plant Cell Environ. 20: 1473-1483, 1997b.CrossRefGoogle Scholar
  60. Pfündel, E.: Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence.-Photosynth. Res. 56: 185-195, 1998.CrossRefGoogle Scholar
  61. Rost, F.W.D.: Fluorescence Microscopy.-Cambridge University Press, Cambridge 1995.Google Scholar
  62. Saito, Y., Hatake, K., Nomura, E., Kawahara, T.D., Nomura, A., Sugimoto, N., Itabe, T.: Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring.-Jap. J. appl. Phys. 36: 7024-7027, 1997a.CrossRefGoogle Scholar
  63. Saito, Y., Kanoh, M., Hatake, K., Kawahara, T.D., Nomura, A.: Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring.-Appl. Opt. 37: 431-437, 1998.CrossRefPubMedGoogle Scholar
  64. Saito, Y., Saito, R., Kawahara, T.D., Nomura, A., Takeda, S.: Development and performance characteristics of laser-induced fluorescence imaging lidar for forestry applications.-Forest Ecol. Managem. 128: 129-137, 2000.CrossRefGoogle Scholar
  65. Saito, Y., Saito, R., Nomura, A., Kawahara, T.D., Nomura, A., Takaragaki, S., Ida, K., Takeda, S.: Performance check of vegetation fluorescence imaging lidar through in vivo and remote estimation of chlorophyll concentration inside plant leaves.-Opt. Rev. 6: 155-159, 1999.CrossRefGoogle Scholar
  66. Saito, Y., Takahashi, K., Nomura, E., Mineuchi, K., Kawahara, T.D., Nomura, A., Kobayashi, S., Ishii, H.: Visualization of laser-induced fluorescence of plants influenced by environmental stress with a microfluorescence imaging system and a fluorescence imaging lidar system.-SPIE 3059: 190-198, 1997b.Google Scholar
  67. Schindler, C., Lichtenthaler, H.K.: Is there a correlation between light-induced zeaxanthin accumulation and quenching of variable chlorophyll a fluorescence?-Plant Physiol. Biochem. 32: 813-823, 1994.Google Scholar
  68. Schweiger, J., Lang, M., Lichtenthaler, H.K.: Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants.-J. Plant Physiol. 148: 536-547, 1996.CrossRefGoogle Scholar
  69. Šesták, Z.: Chlorophyll fluorescence kinetic depends on age of leaves and plants.-In: Argyroudi-Akoyunoglou, J.H., Senger, H. (ed.): The Chloroplast: From Molecular Biology to Biotechnology. Pp. 291-296. Kluwer Academic Publ., Dordrecht-Boston-London 1999.Google Scholar
  70. Šesták, Z., Šiffel, P.: Leaf-age related differences in chlorophyll fluorescence.-Photosynthetica 33: 347-369, 1997.Google Scholar
  71. Siebke, K., Weis, E.: Assimilation images of leaves of Glechoma hederacea: Analysis of non-synchronous stomata related oscillations.-Planta 196: 155-165, 1995a.CrossRefGoogle Scholar
  72. Siebke, K., Weis, E.: Imaging of chlorophyll-a-fluorescence in leaves: Topography of photosynthetic oscillations in leaves of Glechoma hederacea.-Photosynth. Res. 45: 225-237, 1995b.CrossRefPubMedGoogle Scholar
  73. Šiffel, P., Šesták, Z.: Low temperature fluorescence spectra of chloroplasts: methodical aspects and possible applications.-In: Lichtenthaler, H.K. (ed.): Applications of Chlorophyll Fluorescence. Pp. 55-61. Kluwer Academic Publ., Dordrecht-Boston-London 1988.Google Scholar
  74. Slavik, J. (ed.): Fluorescence Microscopy and Fluorescent Probes.-Plenum, New York 1996.Google Scholar
  75. Sowinska, M., Cunin, B., Deruyver, A., Heisel, F., Miehé, J.-A., Langsdorf, G., Lichtenthaler, H.K.: Near-field measurements of vegetation by laser-induced fluorescence imaging.-SPIE 3868: 120-131, 1999.Google Scholar
  76. Stober, F., Lang, M., Lichtenthaler, H.K.: Studies on the blue, green and red fluorescence signatures of green, etiolated and white leaves.-Remote Sens. Environ. 47: 65-71, 1994.CrossRefGoogle Scholar
  77. Stober, F., Lichtenthaler, H.K.: Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat.-J. Plant Physiol. 140: 673-680, 1992.CrossRefGoogle Scholar
  78. Stober, F., Lichtenthaler, H.K.: Characterization of the laser-induced blue, green and red fluorescence signatures of leaves of wheat and soybean grown under different irradiance.-Physiol. Plant. 88: 696-704, 1993a. Stober, F., Lichtenthaler, H.K.: Studies on the localization and spectral characteristics of the fluorescence emission of differ-ently pigmented wheat leaves.-Bot. Acta 106: 365-370, 1993b.CrossRefGoogle Scholar
  79. Strasser, R.J., Butler, W.L.: Fluorescence emission spectra of Photosystem I, Photosystem II and the light-harvesting chlorophyll a/b complex of higher plants.-Biochim. biophys. Acta 462: 307-313, 1977.CrossRefPubMedGoogle Scholar
  80. Sundbom, E., Björn, L.O.: Phytoluminography: imaging plants by delayed light emission.-Physiol. Plant. 40: 39-41, 1977.CrossRefGoogle Scholar
  81. Valcke, R., Ciscato, M., Heisel, F., Miehé, J.-A., Sowinska, M.: Analysis of heavy metal stressed plants by fluorescence imaging.-SPIE 3707: 82-90, 1999.Google Scholar
  82. Wang, X.F., Herman, B.: Fluorescence Imaging Spectroscopy and Microscopy.-John Wiley &; Sons, New York 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C. Buschmann
    • 1
  • G. Langsdorf
    • 2
  • H.K. Lichtenthaler
    • 2
  1. 1.Botanical InstituteUniversity of KarlsruheKarlsruheGermany
  2. 2.Botanical InstituteUniversity of KarlsruheKarlsruheGermany

Personalised recommendations