Skip to main content
Log in

Microscopy and neutron diffraction study of a zirconium-8 wt% stainless steel alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrometallurgical treatment of zirconium-based and Zircaloy-clad spent nuclear fuels will yield a metal waste form. The baseline composition for the waste form is zirconium-8 wt% stainless steel (Zr-8SS). The microstructure of the Zr-8SS alloy has been studied by scanning electron microscopy, energy dispersive spectroscopy, and neutron diffraction. The phases present in the as-cast alloy include Zr(α), Zr3(Fe,Ni), Zr2(Fe,Ni), Zr2(Fe,Cr), and Zr(Fe,Cr)2; a solidification sequence has been proposed to explain the formation and morphology of these phases. Alloy phase stability has been studied by thermal aging at 780°C for periods up to 30 days. The phase changes that occur during thermal aging include an increase in Zr3(Fe,Ni) and a decrease in Zr2(Fe,Ni) content; reaction mechanisms have been proposed to explain these changes. The lattice parameters of alloy phases have been determined by neutron diffraction and found to be in agreement with those previously reported for similar phases. This study of alloy microstructures is the first step towards understanding the actinide and fission product distribution and predicting the corrosion behavior of the Zr-8SS metal waste form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. McPheeters, E. C. Gay, E. J. Karell and J. P. Ackerman, JOM 49 (1997) 22.

    Google Scholar 

  2. S. M. McDeavitt, D. P. Abraham and J. Y. Park, J. Nucl. Mater. 257 (1998) 21.

    Google Scholar 

  3. B. Cox, “Advances in Corrosion Science and Technology,” Vol. 5 (Plenum Press, New York, 1976) p. 173.

    Google Scholar 

  4. S. Kass, Corrosion of Zirconium Alloys, ASTM STP-368, American Society for Testing of Materials, Philadelphia, PA, 1964, p. 3.

    Google Scholar 

  5. D. Arias, M. S. Granovsky and J. P. Abriata, “Phase Diagrams of Binary Iron Alloys,” edited by H. Okamoto (ASM International, Materials Park, OH, 1993) p. 467.

    Google Scholar 

  6. D. Arias and J. P. Abriata, “Binary Alloy Phase Diagrams,” Vol. 2, edited by T. P. MASSALSKI (ASM International, Materials Park, OH, 1990) p. 1798.

    Google Scholar 

  7. D. P. Abraham, Argonne National Laboratory, unpublished data.

  8. A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report, LAUR 86-748, 1986.

  9. J. P. Abriata, J. Garces and R. Versaci, Bull. Alloy Phase Diagrams 7 (1986) 116.

    Google Scholar 

  10. B. O. Lichter, Trans. Metall. Soc. AIME 218 (1960) 1015.

    Google Scholar 

  11. V. Raghavan, “Phase Diagrams of Ternary Iron Alloys, Part 6B” (Indian Institute of Metals, Calcutta, 1992) p. 711.

    Google Scholar 

  12. Idem. “Phase Diagrams of Ternary Iron Alloys, Part 6B” (Indian Institute of Metals, Calcutta, 1992) p. 1094.

    Google Scholar 

  13. S. C. Moss, Ph.D. Thesis, Massachusetts Inst. Technol., Cambridge, MA, 1959.

    Google Scholar 

  14. K. Kanematsu and Y. Fujita, J. Phys. Soc. Japan 29 (1970) 864.

    Google Scholar 

  15. D. Shaltiel, I. Jacob and D. Davidov, J. Less-Common Metals 53 (1977) 117.

    Google Scholar 

  16. E. E. Havinga, H. Damsma and P. Hokkeling, ibid. 27 (1972) 169.

    Google Scholar 

  17. D. Arias and J. P. Abriata, Bull. Alloy Phase Diagrams 7 (1986) 237.

    Google Scholar 

  18. J. A. Sawicki, G. M. Hood, H. Zou and R. J. Schultz, J. Nucl. Mater. 218 (1995) 161.

    Google Scholar 

  19. R. A. Holt, ibid. 35 (1970) 322.

    Google Scholar 

  20. G. Okvist and K. Kallstrom, ibid. 35 (1970) 316.

    Google Scholar 

  21. J. Crepin, T. Bretheau, D. Caldemaison, A. Barbu and G. Jazkierowitcz, J. Mater. Sci. 32 (1997) 4841.

    Google Scholar 

  22. J. Crepin, T. Bretheau and D. Caldemaison, Acta Metall. Mater. 43 (1995) 3709.

    Google Scholar 

  23. N. Rao and V. Bangaru, J. Nucl. Mater. 131 (1985) 280.

    Google Scholar 

  24. T. E. Perez and M. E. Sagesse, Metallography 15 (1982) 43.

    Google Scholar 

  25. D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys” (Van Nostrand Reinhold International, Berkshire, England, 1981) p. 314.

    Google Scholar 

  26. J. Goldak, L. T. Lloyd and C. S. Barrett, Phys. Rev. 144 (1966) 478.

    Google Scholar 

  27. R. M. Kruger and R. B. Adamson, J. Nucl. Mater. 205 (1993) 242.

    Google Scholar 

  28. K. H. J. Buschow, J. Less-Common Metals 79 (1981) 243.

    Google Scholar 

  29. P. Chemelle, D. B. Knorr, J. B. Van Der Sande and R. M. Pelloux, J. Nucl. Mater. 113 (1983) 58.

    Google Scholar 

  30. W. J. S. Yang, R. P. Tucker, B. Cheng and R. B. Adamson, ibid. 138 (1986) 185.

    Google Scholar 

  31. O. Canet, M. Latroche, F. BourÉe-Vigneron and A. Percheron-GuÉgan, J. Alloys Comp. 210 (1994) 129.

    Google Scholar 

  32. P. Nash and C. S. Jayanath, Bull. Alloy Phase Diagrams 5 (1984) 144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, D.P., Richardson, J.W. & McDeavitt, S.M. Microscopy and neutron diffraction study of a zirconium-8 wt% stainless steel alloy. Journal of Materials Science 36, 5143–5154 (2001). https://doi.org/10.1023/A:1012433526079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012433526079

Keywords

Navigation