Automation and Remote Control

, Volume 62, Issue 10, pp 1725–1730 | Cite as

Optimal Synchronizing Experiments with Linear Automata

  • A. S. Bogomolov
  • D. V. Speranskii


A method of designing an optimal synchronizing sequence for stationary linear automata over finite fields is elaborated. This problem is always reducible to a linear integer programming problem. An example is given to illustrate the application of the method.


Mechanical Engineer System Theory Programming Problem Integer Programming Linear Integer Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gill, A., Introduction to the Theory of Finite-State Machines, New York: McGraw-Hill, 1962. Translated under the title Vvedenie v teoriyu konechnykh avtomatov, Moscow: Nauka, 1966.Google Scholar
  2. 2.
    Speranskii, D.V., Synchronization of Linear Sequential Machines, Avtom. Telemekh., 1996, no. 5, pp. 141–149.Google Scholar
  3. 3.
    Christofides, N., Graph Theory. An Algebraic Approach, New York: Academic, 1975. Translated under the title Teoriya grafov: algoritmicheskii podkhod, Moscow: Mir, 1987.Google Scholar
  4. 4.
    Speranskii, D.V., Generalized Synchronizability of Linear Automata, Kibern. Sist. Analiz, 1988, no. 3, pp. 17–25.Google Scholar
  5. 5.
    Minoux, M., Mathematical Programming: Theory and Algorithms, New York: Wiley, 1986. Translated under the title Matematicheskoe programmirovanie, Moscow: Nauka, 1990.Google Scholar
  6. 6.
    Okunev, L.Ya., Kratkii kurs teorii chisel (A Short Course on Number Theory), Moscow: Uchpedgiz, 1956.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • A. S. Bogomolov
    • 1
  • D. V. Speranskii
    • 1
  1. 1.Chernyshevskii State UniversitySaratovRussia

Personalised recommendations