Skip to main content
Log in

Thermal Stability of Glucose Oxidase from Penicillium adametzii

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The thermal stability of glucose oxidase was studied at temperatures between 50 and 70°C by kinetic and spectroscopic (circular dichroism) methods. The stability of glucose oxidase was shown to depend on the medium pH, protein concentration, and the presence of protectors in the solution. At low protein concentrations (<15 μg/ml) and pH > 5.5, the rate constants k in, s–1, for thermal inactivation of glucose oxidase were high. Circular dichroic spectra suggested an essential role of β structures in stabilizing the protein globule. At a concentration of 15 μg protein/ml, the activation energy E Aof thermal inactivation of glucose oxidase in aqueous solution was estimated at 79.1 kcal/mol. Other thermodynamic activation parameters estimated at 60°C had the following values: ΔH= 78.4 kcal/mol, ΔG= 25.5 kcal/mol, and ΔS= 161.9 entropy units. The thermal inactivation of glucose oxidase was inhibited by KCl, polyethylene glycols, and polyols. Among polyols, the best was sorbitol, which stabilized glucose oxidase without affecting its activity. Ethanol, phenol, and citrate exerted destabilizing effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Crueger, A. and Crueger, W., Microbial Enzymes and BioTechnology, London and New York: Elsevier, 1990, pp. 177-226.

    Google Scholar 

  2. Kim, K.K., Fravel, D.R., and Papavizas, G.C., Can. J. Microbiol., 1990, vol. 36, pp. 199-205.

    Google Scholar 

  3. Wilson, R. and Turner, A.P.F., Biosens. Bioelectronics, 1992, vol. 7, no. 2, pp. 165-187.

    Google Scholar 

  4. Anderkofler, L.M., Proizvodstvo i primenenie fermentnykh preparatov v pishchevoi promyshlennosti (Production and Application of Enzymatic Preparations in Food Industry), Moscow: Pishchepromizdat, 1963, pp. 73-88.

    Google Scholar 

  5. Rohr, M., Kubicek, Ch.P., and Kominek, J., Biotechnology, Rehm H.S., and Reed G, Eds., 1996, vol. 6, pp. 347-362.

  6. Alberti, B.A. and Klibanov, A.V., Enzyme Microb. Technol., 1982, vol. 4, no. 1, pp. 47-49.

    Google Scholar 

  7. Kowakami, K., Nagamatsu, S., Ishii, M., and Kusonoki, K., Biotechnol. Bioeng., 1986, vol. 28, no. 7, pp. 1007-1013.

    Google Scholar 

  8. Gorodetskii, V.K., Belki v meditsine i narodnom khozyaistve (Proteins in Medicine and National Economy), Kiev: Naukova Dumka, 1965, pp. 195-203.

    Google Scholar 

  9. Garzillo, A.M.V., Di Paolo, S., Fenice, M., Petruccioli, M., Buonocore, V., and Federici, F., Biotechnol. Appl. Biochem., 1995, vol. 22, pp. 169-178.

    Google Scholar 

  10. Mikhailova, R.V., Lobanok, A.G., Shishko, Zh.F., and Yasenko, M.I., Mikol. Fitopatol., 1998, vol. 32, no. 1, pp. 60-64.

    Google Scholar 

  11. Shishko, Zh.F., Mikhailova, R.V., Lobanok, A.G., and Yasenko, M.I., Trudy mezhdunarodnoi konferentsii po molekulyarnoi genetike i biotekhnologii (Proc. of Int. Conf. on Molecular Genetics in Biotechnology), Minsk, 1998, pp. 286-287.

  12. Metelitsa, D.I. and Eremin, A.N., Usp. Khim., 1987, vol. 56, no. 11, pp. 1921-1948.

    Google Scholar 

  13. Degtyar', R.G., Gulyi, M.F., Gudkova, L.V., and Massan, N.S., Ukr. Biokhim. Zh., 1971, vol. 43, no. 3, pp. 322-326.

    Google Scholar 

  14. Nakamura, S., Hayashi, S., and Koga, K., Biochim. Biophys. Acta, 1976, vol. 445, no. 2, pp. 294-308.

    Google Scholar 

  15. Kalisz, H.M., Hecht, J.-J., Schomburg, D., and Schmid, R.D., Biochim. Biophys. Acta, 1991, vol. 1080, no. 2, pp. 138-142.

    Google Scholar 

  16. Ye, W.-N. and Combes, D., Biochim. Biophys. Acta, 1989, vol. 999, no. 1, pp. 86-93.

    Google Scholar 

  17. Nakamura, S. and Koga, K., Biochem. Biophys. Res. Commun., 1977, vol. 78, no. 2, pp. 806-810.

    Google Scholar 

  18. Cioci, F. and Lavecchia, R., Biochem. Mol. Biol. Int., 1994, vol. 34, no. 4, pp. 705-712.

    Google Scholar 

  19. Ye, W.-N., Combes, D., and Monsan, P., Enzyme Microb. Technol., 1988, vol. 10, no. 8, pp. 498-502.

    Google Scholar 

  20. O'Malley, J.J. and Ulmer, R.W., Biotechnol. Bioeng., 1973, vol. 15, no. 5, pp. 917-925.

    Google Scholar 

  21. Degtyar', R.G. and Gulyi, M.F., Ukr. Bot. Zh., 1979, vol. 51, no. 4, pp. 363-368.

    Google Scholar 

  22. Basaveswara Rao, V., Sastri, N.V.S., and Subba Rao, P.V., Biochem. J., 1981, vol. 193, no. 2, pp. 389-394.

    Google Scholar 

  23. Arica, M.Y. and Hasirci, V., J. Chem. Technol. Biotechnol., 1993, vol. 58, no. 3, pp. 287-292.

    Google Scholar 

  24. Komori, T., Muramatsu, N., and Kondo, T., J. Microencapsul, 1986, vol. 3, no. 3, pp. 219-221.

    Google Scholar 

  25. Hashino, K., Muramatsu, N., and Kondo, T., J. Microencapsul, 1989, vol. 6, no. 2, pp. 205-211.

    Google Scholar 

  26. Kulisz, Yu.Yu. and Kurtinaitene, B.S., Biokhimiya (Moscow), 1978, vol. 43, no. 3, pp. 453-459.

    Google Scholar 

  27. Kalisz, H.M., Hendle, J., and Schmid, R.D., Appl. Microbiol. Biotechnol., 1997, vol. 47, no. 5, pp. 502-507.

    Google Scholar 

  28. Witt, S., Singh, M., and Kalisz, H.M., Microbiol., 1998, vol. 64, no. 4, pp. 1405-1411.

    Google Scholar 

  29. Poltorak, O.M. and Chukhrai, E.S., Itogi Nauki Tekh. Ser.: Biotekhnologiya, Moscow: VINITI, 1986, vol. 5, pp. 50-86.

    Google Scholar 

  30. Poltorak, O.M., Chukhrai, E.S., and Torshin, I.Yu., Biokhimiya (Moscow), 1998, vol. 63, no. 3, pp. 360-369.

    Google Scholar 

  31. Anson, M.L., Adv. Protein Chem, 1945, vol. 2, pp. 361-368.

    Google Scholar 

  32. Proc. of Int. Symp. on Protein Structure, Stability and Folding. Fundamental and Medical Aspects, Moscow, 1998.

  33. Fertman, G.N. and Girs, V.T., Prikl. Biokhim. Mikrobiol., 1969, vol. 5, no. 5, p. 563.

    Google Scholar 

  34. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1-2, pp. 248-254.

    Google Scholar 

  35. Ciucu, A. and Patroescu, C., Anal. Lett., 1984, vol. 17, no. 12, pp. 1417-1427.

    Google Scholar 

  36. Markwell, J., Frakes, L.G., Brott, E.C., Osterman, J., and Wagner, F.W., Appl. Microbiol. Biotechnol., 1989, vol. 30, no. 2, pp. 166-169.

    Google Scholar 

  37. Kiess, M., Hecht, H.-J., and Kalisz, H.M., Eur. J. Biochem., 1998, vol. 252, no. 1, pp. 90-99.

    Google Scholar 

  38. Bohm, G., CD Spectra Deconvolution. CDNN 2.1, Web: http://bioinformatik.biochemtech.unihalle.de/cdnn.

  39. Degtyar', R.G. and Gulyi, M.F., Ukr. Biokhim. Zh., 1981, vol. 53, no. 4, pp. 42-47.

    Google Scholar 

  40. Wohlfahrt, G., Witt, S., Hendle, J., Schomburg, D., Kalisz, H.M., and Hecht, H.-J., Acta Crystallogr., 1999, vol. D55, no. 5, pp. 969-977.

    Google Scholar 

  41. Bright, H.J. and Appleby, M., J. Biol. Chem., 1969, vol. 244, pp. 3625-3634.

    Google Scholar 

  42. Hayashi, S. and Nakamura, S., Biochim. Biophys. Acta, 1976, vol. 438, no. 1, pp. 37-48.

    Google Scholar 

  43. Metelitsa, D.I. and Denisov, E.T., Kinet. Katal., 1968, vol. 9, no. 4, pp. 733-741.

    Google Scholar 

  44. Cioci, F., Lavecchia, R., and Marelli, L., Biocatalysis, 1994, vol. 10, pp. 137-147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremin, A.N., Metelitsa, D.I., Shishko, Z.F. et al. Thermal Stability of Glucose Oxidase from Penicillium adametzii. Applied Biochemistry and Microbiology 37, 578–586 (2001). https://doi.org/10.1023/A:1012398900194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012398900194

Keywords

Navigation