Skip to main content
Log in

Synthesis of Valproic Acid Amides of a Melatonin Derivative, a Piracetam and Amantadine for Biological Tests

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Three new amide derivatives of valproic acid have been synthesized and characterized by spectrophotometric studies. The rationale for the preparation of such agents has been based on the observation that chemical combination of the anticonvulsant pharmacophore, valproic acid with amine moieties produces more effective and less toxic amides. The amine components selected in this work also exhibit neuroactivity with the prospect of these agents being biologically active in controlling not just seizures and but also possessing neuroprotective properties. We report here the synthesis and properties of the valproylamides of 5-methoxytryptamine, related to melatonin (1), of N-substituted 2-pyrrolidinone related to piracetam (2), and of adamantylamine related to amantadine (3). In preliminary tests these compounds showed low toxicity and a variety of anticonvulsive properties, including a delay in onset of activity. These compounds and their derivatives are now available to be tested additionally for control of subclinical seizures, enhancement of cognition, behavior modification and alleviation of symptoms and disorders due to neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Dean, J. C. 1996. Valproate. in Wylie, E., Wilkins and Williams (ed.), The Treatment of Epilepsy, Principles and Practice, Baltimore.

    Google Scholar 

  2. Nau, H. and Hendrickx, A. G. 1987. Valproic acid teratogenesis. ISI Atlas. Sci. Pharmacol. 1:52–56.

    Google Scholar 

  3. Nau, H., Hauck, R.-S., and Ehlers, K. 1991. Valproic acid induced neural tube defects in mouse and human:aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol. Toxicol. 69:310–321.

    Google Scholar 

  4. Ingram, J. L., Peckham, S. M., Tisdale, B., and Rodier, P. M. 2000. Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol. Teratol. 22:319–324.

    Google Scholar 

  5. Nau, H. and Loscher, W. 1986. Pharmacologic Evaluation of various metabolites and analogs of valproic acid: Teratogenic potencies in mice. Fundam. Appl. Toxicol. 6:669–676.

    Google Scholar 

  6. Elmazar, M. M. A., Hauck, R.-S., and Nau, H. 1993. Anticonvulsant and neurotoxic activities of twelve analogs of valproic acid. J. Pharm. Sci. 8282:1255–1258.

    Google Scholar 

  7. Bojic, U., Elmazar, M. M. A., Hauck, R.-S., and Nau, H. 1996. Further branching of valproate-related carboxylic acids reduces the teratogenic activity, but not the anticonvulsant effect. Chem. Res. Toxicol. 9:866–870.

    Google Scholar 

  8. Loscher, W. and Nau, H. 1985. Pharmacological evaluation of various metabolites and analogues of valproic acid. Anticonvulsant and toxic potencies in mice. Neuropharmacol. 24:427–435.

    Google Scholar 

  9. Haj-Yehia, A. and Bialer, M. 1989. Structure pharmacokinetic relationships in a series of valpromide derivatives with antiepileptic activity. Pharm. Res. 8:683–689.

    Google Scholar 

  10. Haj-Yehia, A. and Bialer, M. 1990. Structure pharmacokinetic relationships in a series of short fatty acid amides that possess anticonvulsant activity. J. Pharm. Sci. 79:719–724.

    Google Scholar 

  11. Nau, H. and Scott W. J. Jr. 1986. Weak acids may act as teratogens by accumulating in the basic milieu of the early mammalian embryo. Nature 323:276–278.

    Google Scholar 

  12. Nau, H. and Scott, W. J., Jr. 1987. Teratogenicity of valproic acid and related substances in the mouse: Drug accumulation and pHi in the embryo during organogenesis and structureactivity considerations. Arch. Toxicol. Suppl. 11:128–139.

    Google Scholar 

  13. Bechar, E. and Astroug, H. 1997. Synthesis and pharmacological activity of two derivatives of the amide of valproic acid. Arch. Pharm. Pharm. Med. Chem. 330:273–276.

    Google Scholar 

  14. Chatterjie, N. and Alexander, G. J. 2000. Bonded pharmacophores show striking prolongation of effects. Abst. ASBMB-ASPET Joint Meet Suppl. A10.

  15. Chatterjie, N. and Alexander, G. J. 2001. Valproylmelatonin: A long-acting anticonvulsant. FASEB J. 15:A809.

    Google Scholar 

  16. Chatterjie N., Alexander, G. J., Sechzer, J. A., and Lieberman, K. W. 1995. Amphetamine-naloxone interaction: Prolonged protection by naloxyl-6-alpha-spirohydantoin. FASEB J. 9:A1372.

    Google Scholar 

  17. Hugel, H. M. and Kennaway, D. J. 1995. Synthesis and chemistry of melatonin and related compounds. A review. Org. Prep. Proceed. Int. 27:1–311.

    Google Scholar 

  18. Mevissen, M. and Ebert, U. 1998. Anticonvulsant effects of melatonin in amygdala-kindled rats. Neurosci. Lett. 257:13–16.

    Google Scholar 

  19. Fauteck, J., Schmidt, H., Lerchl, A., Kurlemann, G., and Wittkowski, W. 1999. Melatonin in epilepsy: First results of replacement therapy and first clinical results. Biol. Signals Recept. 8:105–110.

    Google Scholar 

  20. Anton-Tay, F., Diaz, J. L., and Fernandez-Guardiola, A. 1974. On the effect of melatonin upon human brain: Its possible therapeutic implications. Life Sci. 10:841–850.

    Google Scholar 

  21. Espinar, A., Garcia-Oliva, A., Isorna, E. M., Quesada, A., Prada, F. A., and Guerrero, J. M. 2000. Neuroprotection by melatonin from glutamate-induced excitotoxicity during development of the cerebellum in the chick embryo. J. Pineal Res. 28:81–88.

    Google Scholar 

  22. McCabe, P. H. 2000. New anti-epileptic drugs for the 21-st Century. Expert Opin. Pharmacol. 1:633–674.

    Google Scholar 

  23. Danysz, W., Parsons, C. G., Kornhuber, J., Schmidt, W. J., and Quack, G. 1997. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents-preclinical studies. Neurosci. Biobehav. Rev. 21:455–468.

    Google Scholar 

  24. Kornhuber, J. and Weller, M. 1997. Psychotogenicity and N-methyl-D-aspartate receptor antagonism: Implications for neuroprotective pharmacotherapy. Biol. Psychiatry 41:135–144.

    Google Scholar 

  25. Deykin, E. Y. and MacMahon, B. 1979. The increase of seizures among children with autistic symptoms. Am. J. Psychiat. 136:1310–1312.

    Google Scholar 

  26. Holmes, G. L. 1997. Epilepsy in the developing brain, Lessons from the laboratory and clinic. Epilepsia 38:12–30.

    Google Scholar 

  27. Binnie, C. D. and Marston, D. 1992. Cognitive correlation of interictal discharges. Epilepsia 33(Suppl. 6):11–17.

    Google Scholar 

  28. Kushner, S. A., Dewey, S. L., and Kornetsky, C. 1999. The irreversible gamma-aminobutyric acaid (GABA) transaminase inhibitor gamma-vinyl-GABA blocks cocaine self-administration in rats. J. Pharmacol. Exp. Therap. 290:797–802.

    Google Scholar 

  29. Jambaque, I., Chiron, C., Dumas, C., Mumford, J., and Dulac, O. 2000. Mental and behavioral outcome of infantile epilepsy treated by vigabatrin in tuberous sclerosis patients. Epilepsy Res. 38:151–160.

    Google Scholar 

  30. Gilberg, C. 1991. Treatment of epilepsy in autism. J. Autism Dev. Disorders 21:61–77.

    Google Scholar 

  31. Childs, J. A. and Blair, J. L. 1997. Valproic acid treatment of epilepsy in autistic twins. J. Neurosci. Nurs. 29:244–248.

    Google Scholar 

  32. Ballaban-Gil, K. and Tuchman, R. 2000. Epilepsy and epileptiform EEG: Association with autism and language disorders. Ment. Retard. Dev. Disabil. Res. Rev. 6:300–308.

    Google Scholar 

  33. Tuchman, R. 2000. Treatment of seizure disorders and EEG abnormalities in children with autism spectrum disorders. J. Autism Dev. Disorders 30:485–489.

    Google Scholar 

  34. Schiffer, W. K., Gerasimov, M. R., Bermel, R. A., Brodie, J. D., and Dewey, S. L. 2000. Stereoselective inhibition of dopaminergic activity by gamma vinyl-GABA following a nicotine or cocaine challenge: A pet/microdialysis study. Life Sci. 66:169–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjie, N., Alexander, G. & Wang, H. Synthesis of Valproic Acid Amides of a Melatonin Derivative, a Piracetam and Amantadine for Biological Tests. Neurochem Res 26, 1171–1176 (2001). https://doi.org/10.1023/A:1012383125480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012383125480

Navigation