Skip to main content
Log in

Quantaloids Describing Causation and Propagation of Physical Properties

  • Published:
Foundations of Physics Letters

Abstract

A general principle of ‘causal duality’ for physical systems, lying at the base of representation theorems for both compound and evolving systems, is proved; formally it is encoded in a quantaloidal setting. Other particular examples of quantaloids and quantaloidal morphisms appear naturally within this setting; as in the case of causal duality, they originate from primitive physical reasonings on the lattices of properties of physical systems. Furthermore, an essentially dynamical operational foundation for studying physical systems is outlined; complementary as it is to the existing static operational foundation, it leads to the natural axiomatization of ‘causal duality’ in operational quantum logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Aerts, Found. Phys. 12, 1131 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  2. D. Aerts, Found. Phys. 24, 1227 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Amira, B. Coecke, and I. Stubbe, Helv. Phys. Acta 71, 554 (1998).

    MathSciNet  Google Scholar 

  4. G. Birkhoff and J. von Neumann, Ann. Math. 37, 823 (1936).

    Article  MathSciNet  Google Scholar 

  5. F. Borceux and I. Stubbe, “Short introduction to enriched categories,” in Current Research in Operational Quantum Logic, B. Coecke, D.J. Moore, and A. Wilce, eds. (Kluwer Academic, Dordrecht, 2000), pp.167-194.

    Chapter  Google Scholar 

  6. B. Coecke, Int. J. Theor. Phys. 39, 585 (2000).

    Article  MathSciNet  Google Scholar 

  7. B. Coecke, “Quantum logic in intuitionistic perspective & disjunctive quantum logic in dynamic perspectives,” http://xxx.lanl.gov arXiv: Math.LO/0011208 & 0011209, to appear in Studia Logica (2000).

  8. B. Coecke and D. J. Moore, “Operational Galois adjunctions,” in D.J. Moore, and A. Wilce, eds. (Kluwer Academic, Dordrecht, 2000) Ref. 5, pp. 195-218.

    Chapter  Google Scholar 

  9. B. Coecke and I. Stubbe, Int. J. Theor. Phys. 38, 3296 (1999).

    Article  MathSciNet  Google Scholar 

  10. B. Coecke and I. Stubbe, Found. Phys. Lett. 12, 29 (1999).

    Article  MathSciNet  Google Scholar 

  11. B. Coecke and I. Stubbe, Int. J. Theor. Phys. 39, 605 (2000).

    Article  MathSciNet  Google Scholar 

  12. S. Eilenberg and S. Mac Lane, Trans. AMS 58, 231 (1945).

    Article  MathSciNet  Google Scholar 

  13. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  ADS  Google Scholar 

  14. Cl.-A. Faure and A. Frölicher, Geom. Ded. 47, 25 (1993).

    Article  Google Scholar 

  15. Cl.-A. Faure and A. Frölicher, Geom. Ded. 53, 237 (1994).

    Article  Google Scholar 

  16. Cl.-A. Faure and A. Frölicher, Appl. Cat. Struc. 6, 87 (1996).

    Article  Google Scholar 

  17. Cl.-A. Faure, D.J. Moore and C. Piron, Helv. Phys. Acta 68, 150 (1995).

    MathSciNet  Google Scholar 

  18. J.M. Jauch and C. Piron, Helv. Phys. Acta 42, 842 (1969).

    MathSciNet  Google Scholar 

  19. S. Mac Lane, Categories for the Working Mathematician (Springer, Berlin, 1971).

    Book  MATH  Google Scholar 

  20. D. J. Moore, Helv. Phys. Acta 68, 658 (1995).

    MathSciNet  Google Scholar 

  21. D. J. Moore, Int. J. Theor. Phys. 36, 2707 (1997).

    Article  Google Scholar 

  22. D. J. Moore, Stud. Hist. Phil. Mod. Phys. 30, 61 (1999).

    Article  Google Scholar 

  23. C. J. Mulvey, Rend. Circ. Math. Palermo 12, 99 (1986).

    MathSciNet  Google Scholar 

  24. J. Paseka and J. Rosicky, “Quantales,” in D.J. Moore, and A. Wilce, eds. (Kluwer Academic, Dordrecht, 2000) Ref. 5, pp. 245-262.

    Chapter  Google Scholar 

  25. C. Piron, Helv. Phys. Acta 37, 439 (1964).

    MathSciNet  Google Scholar 

  26. C. Piron, Foundations of Quantum Physics (Benjamin, Reading, 1976).

    Book  MATH  Google Scholar 

  27. C. Piron, Mécanique quantique. Bases et applications (Presses polytechniques et universitaires romandes, Lausanne, 1990, 1998).

    Google Scholar 

  28. K. I. Rosenthal, Quantales and their Applications, (Pitman Research Notes in Mathematics Series 234) (Longman Scientific & Technical, Essex, 1990).

    MATH  Google Scholar 

  29. K. I. Rosenthal, The Theory of Quantaloids (Pitman Research Notes in Mathematics Series 348) (Longman Scientific & Technical, Essex, 1996).

    MATH  Google Scholar 

  30. I. Stubbe, Notes du séminaire itinérant des catégories Université de Picardie-Jules Verne, Amiens, 2000.

    Google Scholar 

  31. S. Sourbron, Found. Phys. Lett. 13, 357 (2000).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coecke, B., Moore, D.J. & Stubbe, I. Quantaloids Describing Causation and Propagation of Physical Properties. Found Phys Lett 14, 133–145 (2001). https://doi.org/10.1023/A:1012377520222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012377520222

Navigation