Skip to main content
Log in

Nitric Oxide Reduces the Palmitoylation of Rat Myelin Proteolipid Protein by an Indirect Mechanism

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Brain slices from 20-day-old rats were incubated with [3H]palmitate for 2 hours in the absence or presence of the NO-donors S-nitroso-N-acetyl-penicillamine (SNAP), ethyl-2-[hydroxyimino]-5-nitro-3-hexeneamide (NOR-3), 4-phenyl-3-furoxan carbonitrile (PFC) and sodium nitroprusside (SNP). Each of these drugs reduced the incorporation of [3H]palmitate into myelin proteolipid protein (PLP) in a concentration-dependent manner, SNP being the most active. The effect of SNAP was prevented by the NO-scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide). Furthermore, decayed-SNAP, sodium nitrite and N- nitrosopyrrolidine were inactive, suggesting that free NO and/or some of its direct oxidation products are the active molecular species. The amount of fatty acids bound to PLP and the rate of deacylation were unaffected by NO. Although NO diminished the number of thiols in brain and myelin proteins, with the formation of both nitrosothiols and disulfides, these changes did not parallel those in PLP acylation. In contrast, NO was effective at reducing the palmitoylation of brain and myelin lipids, and this effect along with that of PLP, was ascribed to a decrease in palmitoyl-CoA levels. The NO-induced reduction in acyl-CoA concentration was due to the decline in ATP levels, while the amount of [3H]palmitate incorporated into the tissue, the activity of palmitoyl-CoA ligase and palmitoyl-CoA hydrolase, and the concentration of CoASH were unaltered by the drugs. Experiments with endogenously-synthesized [18O]fatty acids confirmed that NO affects predominantly the ATP-dependent palmitoylation of PLP. In conclusion, the inhibitory action of NO on the fatty acylation of PLP is indirect and caused by energy depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ross N.W. and Braun, P. E. 1988. Acylation in vitro of the myelin proteolipid protein and comparison with acylation in vivo: acylation of a cysteine occurs nonenzymatically. J. Neurosci. Res. 21:35–44.

    Google Scholar 

  2. Bizzozero O. A. and Good L. K. 1990. Myelin proteolipid protein contains thioester-linked fatty acids. J. Neurochem. 55:1986–1992.

    Google Scholar 

  3. Weimbs, T. and Stoffel W. 1992. Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry 31:12289–12296.

    Google Scholar 

  4. Townsend L. E., Agrawal D., Benjamins J. A., and Agrawal H. C. 1982. In vitro acylation of rat brain myelin proteolipid protein. J. Biol. Chem. 257:9745–9750.

    Google Scholar 

  5. Townsend L. E. and Benjamins J. A. 1983. Effects of monensin on posttranslational processing of myelin proteins. J. Neurochem. 40:1333–1339.

    Google Scholar 

  6. Bizzozero O. A., Soto E. F., and Pasquini J. M. 1983. Myelin proteolipid protein is not esterified at the site of synthesis. Neurochem. Int. 5:729–736.

    Google Scholar 

  7. Pasquini J. M., Bizzozero O. A., Besio-Moreno M., and Soto E. F. 1987. Effects of calcium and cobalt ions on the transfer of proteins to the myelin membrane. Neurochem. Inter. 11:17–22.

    Google Scholar 

  8. Bizzozero O. A., McGarry J. F., and Lees M. B. 1987. Autoacylation of myelin proteolipid protein with acyl-CoA. J. Biol. Chem. 262:13550–13557.

    Google Scholar 

  9. Bizzozero O. A., Leyba, J., and Nuñez D. J. 1992. Characterization of proteolipid protein fatty acylesterase from rat brain myelin. J. Biol. Chem. 267:7886–7894.

    Google Scholar 

  10. Bizzozero O. A., Sanchez P., and Tetzloff S. U. 1999. Effect of ATP-depletion on the palmitoylation of myelin proteolipid protein in young and adult rats. J. Neurochem. 72:2610–2616.

    Google Scholar 

  11. Tetzloff S. U. and Bizzozero O. A. 1998. Palmitoylation of proteolipid protein from rat brain myelin using endogenously-generated 18O-fatty acids. J. Biol. Chem. 273:279–285.

    Google Scholar 

  12. Bizzozero O. A., Bixler H. A., Davis J., Espinosa A., and Messier A. M. 2001. Chemical deacylation reduces the adhesive properties of proteolipid protein and leads to decompaction of the myelin sheath. J. Neurochem. 76:1129–1141.

    Google Scholar 

  13. Moncada S., Palmer R., and Higgs E. 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43:109–142.

    Google Scholar 

  14. Butler A., Flitney, W., and Williams D. 1995. Nitric oxide, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist's perspective. Trends Pharmacol. Sci. 16:18–22.

    Google Scholar 

  15. Beckman J. 1996. The physiological and pathological chemistry of nitric oxide. pp. 1–82 in Nitric Lancaster J. (ed.) Oxide: Principles and Actions Academic Press, San Diego, California.

    Google Scholar 

  16. Wang Y., Newton D. C., and Marsden, P. A. 1999. Neuronal NOS: gene structure, mRNA diversity, and functional relevance. Crit. Rev. Neurobiol. 13:21–43.

    Google Scholar 

  17. Licinio J., Prolo P., McCann S., and Wong M. L. 1999. Brain iNOS: current understanding and clinical implications. Mol. Med. Today 5:225–232.

    Google Scholar 

  18. Hess D., Patterson S., Smith D., and Skene J. 1993. Neuronal growth cone collapse and inhibition of protein acylation by nitric oxide. Nature 366:562–565.

    Google Scholar 

  19. Baker T. L., Booden M. A., and Buss J. E. 2000. S-nitrosocysteine increases palmitate turnover on Ha-Ras in NIH 3T3 cells. J. Biol. Chem. 275:22037–22047.

    Google Scholar 

  20. Adam L., Bouvier M., and Jones T. L. Z. 1999. Nitric oxide modulates β2-adrenergic receptor palmitoylation and signaling. J. Biol. Chem. 274:26337–26343.

    Google Scholar 

  21. Bo L., Dawson T., Wasswlingh S., Mork S., Choi S., Kong P. A., Hanley D., and Trapp B. D. 1994. Induction of nitric oxide synthetase in demyelinating regions of MS brains. Ann. Neurol. 36:778–786.

    Google Scholar 

  22. Bagasra O., Michaels F., Zheng Y., Bobroski L., Spitsin S., Fu Z., Tawadros R., and Koprowski H. 1995. Activation of the inducible form of nitric oxide synthetase in the brains of patients with multiple sclerosis. Proc. Natl. Acad. Sci. 92:12041–12045.

    Google Scholar 

  23. Johnson W., Land J., Thompson E., Bolanos J. P., Clark J. B., and Heales S. J. 1995. Evidence for increased nitric oxide production in multiple sclerosis. Neurol. Neurosurg. Psychiatry 58:107.

    Google Scholar 

  24. Koprowski H., Zheng Y., Heber-Katz E., Fraser N., Rorke L., Fu Z., Hanlon B., and Dietzschold, B. 1993. In vivo expression of inducible nitric oxide synthetase in experimentally induced neurologic diseases. Proc. Natl. Acad. Sci. 90:3024–3027.

    Google Scholar 

  25. Lin R., Lin T., Tilton R., and Cross A. 1993. Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: an electron paramagnetic resonance study. J. Exp. Med. 178:643–648.

    Google Scholar 

  26. Okuda Y., Nakatsuji H., Fujimura H., Esumi H., Ogura T., Yanagihara T., and Sakoda S. 1995. Expression of the inducible form of nitric oxide synthetase in the central nervous system of mice with the severity of actively induced experimental allergic encephalomyelitis. J. Neuroimmunol. 62:103–111.

    Google Scholar 

  27. Norton W. T. and Poduslo S. E. 1973. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21:749–757.

    Google Scholar 

  28. Bizzozero O. A., Besio-Moreno M., Pasquini J. M., Soto E. F., and Gomez C. J. 1982. Rapid purification of proteolipids from rat brain subcellular fractions by chromatography on a lipophillic dextran gel. J. Chromatog. 227:33–44.

    Google Scholar 

  29. Messier A. M. and Bizzozero O. A. 2000. Conserved fatty acid composition of proteolipid protein during brain development and in myelin subfractions. Neurochem. Res. 24:449–455.

    Google Scholar 

  30. Sanchez P., Tetzloff S. U., and Bizzozero O. A. 1998. Veratridine-induced depolarization reduces the palmitoylation of brain and myelin glycerolipids. J. Neurochem. 70:1448–1457.

    Google Scholar 

  31. Riddles P. W., Blakely R. L., and Zerner B. 1979. Ellman's reagent: 5,5′-dithiobis(2-nitrobenzoic acid)-a reexamination. Anal. Biochem. 94:75–81.

    Google Scholar 

  32. Berge R. K. and Farstad M. 1981. Long-chain fatty acyl-CoA hydrolase from rat liver mitochondria. Methods Enzymol. 71:234–242.

    Google Scholar 

  33. Vaswani K. K. and Ledeen R. W. 1987. Long-chain acyl-coenzyme A synthetase in rat brain myelin. J. Neurosci. Res. 17:65–70.

    Google Scholar 

  34. Tubbs P. K. and Garland P. B. 1969. Assay of coenzyme A and some acyl derivatives. Methods Enzymol. 13:535–551.

    Google Scholar 

  35. Titheradge M. A. 1998. The enzymatic measurement of nitrate and nitrite. Meth. Molc. Bio. 100:83–91.

    Google Scholar 

  36. Saville B. 1958. A scheme for the colorimetric determination of microgram amounts of thiols. Analyst (London) 83:670–672.

    Google Scholar 

  37. Crow J. and Ischiropoulos H. 1996. Detection and quantitation of nitrotyrosine residues in proteins: in vivo marker of peroxynitrite. Methods Enzymol. 269:185–194.

    Google Scholar 

  38. Akaike T., Yoshida M., Miyamoto Y., Sato K., Kohno M., Sasamoto K., Miyazaki K., Ueda S., and Maeda H. 1993. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor through a radical reaction. Biochemistry 32:827–832.

    Google Scholar 

  39. Radi R., Beckman J., Bush K., and Freeman B. 1991. Peroxy-nitrite-mediated sulfhydryl oxidation: the cytotoxic potential of superoxide and nitrogen oxide. J. Biol. Chem. 266:4244–4250.

    Google Scholar 

  40. Stamler J. S. 1994. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936.

    Google Scholar 

  41. Grange E., Deutsch J., Smith Q. R., Chang M., Rapaport S. I., and Purdon A. D. 1995. Specific activity of brain palmitoyl-CoA pool provides rates of incorporation of palmitate in brain phospholipids in awake rats. J. Neurochem. 65:2290–2298.

    Google Scholar 

  42. Curran R. D., Ferrari F. K., Kispert P. H., Stadler, J., Stuehr D. J., Simmons R. L., and Billiar T. R. 1991. Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis. FASEB J. 5:2085–2092.

    Google Scholar 

  43. Stadler, J., Curran R. D., Ochoa J. B., Harbrecht B. G., Hoffman, R. A., Simmons R. L., and Billiar T. R. 1991. Effect of endogenous nitric oxide on mitochondrial respiration of rat hepatocytes in vitro and in vivo. Arch. Surg. 126:186–191.

    Google Scholar 

  44. Dimmeler L., Lottspeich F., and Brüne B. 1992. Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 267:16771–16774.

    Google Scholar 

  45. Drapier J. C. and Hibbs J. B. 1986. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells: inhibition involves the iron-sulfur prosthetic group and is reversible. J. Clin. Invest. 78:790–797.

    Google Scholar 

  46. Lizasoain U., Moro M., Knowles R., Darley V., and Moncada S. 1996. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione and glucose. Biochem. J. 314:877–880.

    Google Scholar 

  47. Bolaños J., Peuchen, D., Heales, S., Land J. M., and Clark J. B. 1994. Nitric oxide mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63:910–916.

    Google Scholar 

  48. Bolaños J. P., Almeida A., Stewart V., Peuchen, S., Land, J. M., Clark, J. B., and Heales, S. J. 1997. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem. 68:2227–2240.

    Google Scholar 

  49. Zhang, J., Dawson, V. L., Dawson, T. M., and Snyder S. H. 1994. Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 263:687–689.

    Google Scholar 

  50. Erecinska M., Neldon D., and Vanderkooi J. M. 1995. Effects of NO-generating compounds on synaptosomal energy metabolism. J. Neurochem. 65:2699–2705.

    Google Scholar 

  51. Brorson J. R., Schumacker P. T., and Zhang H. 1999. Nitric oxide acutely inhibits neuronal energy production. J. Neurosci. 19:147–158.

    Google Scholar 

  52. Kapur S., Picard F., Perreault M., Deshaies Y., and Marette A. 2000. Nitric oxide: a new player in the modulation of energy metabolism. Int. J. Obes. Relat. Metab. Disord. 24:S36–S40.

    Google Scholar 

  53. Feelisch M. 1991. The biochemical pathways of nitric oxide formation from nitrovasodilators: appropriate choice of exogenous NO donors and aspects of preparation and handling of aqueous NO solutions. J. Cardiovasc. Pharmacol. 17:S25–S33.

    Google Scholar 

  54. Singh, R. J., Hogg, N., Joseph J., and Kalyanaraman B. 1996. Mechanism of nitric oxide release from S-nitrosothiols. J. Biol. Chem. 271:18596–18603.

    Google Scholar 

  55. Kita Y., Hirasawa Y., Maeda, K., Nishio M., and Yoshida K. 1994. Spontaneous nitric oxide release accounts for the potent pharmacological actions of FK409. Eur. J. Pharmacol. 257:123–130.

    Google Scholar 

  56. Medana C., Ermondi G., Fruttero R., Di Stilo A., Ferretti C., and Gasco A. 1994. Furoxans as nitric oxide donors-4-Phenyl-3-furoxancarbonitrile: thiol-mediated nitric oxide release and biological evaluation. J. Med. Chem. 37:4412–4416.

    Google Scholar 

  57. Ferioli R., Folco G. C., Ferretti C., Gasco A. M., Medana C., Fruttero R., Civelli M., and Gasco A. 1995. A new class of furoxan derivatives as NO donors: mechanism of action and biological activity. Br. J. Pharmacol. 114:816–820.

    Google Scholar 

  58. Terwel D., Nieland, L. J., Schutte B., Reutelingsperger C. P., Ramaekers F. C., and Steinbusch H. W. 2000. S-nitroso-Nacetylpenicillamine and nitroprusside induce apoptosis in a neuronal cell line by the production of different reactive molecules. Eur. J. Pharmacol. 14:19–33.

    Google Scholar 

  59. Boullerne A. I., Nedelkoska L., and Benjamins J. A. 1999. Synergism of nitric oxide and iron in killing the transformed murine oligodendrocyte cell line N20.1. J. Neurochem. 72:1050–1060.

    Google Scholar 

  60. Fukuto J. M. 1995. Chemistry of nitric oxide: biologically relevant aspects. Adv. Pharmacol. 34:1–15.

    Google Scholar 

  61. Bar-tana J., Rose G., and Shapiro B. 1975. Long-chain fatty acyl-CoA synthetase from rat liver microsomes. Methods Enzymol. 35:117–122.

    Google Scholar 

  62. Abou-Issa H. M. and Cleland, W. W. 1969. Studies on microsomal acylation of L-glycerol-3 phosphate. Biochim. Biophys. Acta 176:692–698.

    Google Scholar 

  63. Miki Y., Hosaka K., Yamashita S., Handa H., and Numa S. 1977. Acyl-acceptor specificities of 1-acylglycerol phosphate and 1-acylglycerophosphorylcholine acyltransferase from rat liver microsomes. Eur. J. Biochem. 81:433–441.

    Google Scholar 

  64. Hess D., Lin L., Freeman, J., and Norden J. 1994. Modification of cysteine residues in Go and other neuronal proteins by exposure to nitric oxide. Neuropharmacol. 33:1283–1292.

    Google Scholar 

  65. Yeh D. C., Duncan, J. A., Yamashita S., and Michel T. 1999. Depalmitoylation of endothelial nitric-oxide synthase by acylprotein thioesterase 1 is potentiated by Ca(2+)-calmodulin. J. Biol. Chem. 274:33148–33154.

    Google Scholar 

  66. Malinski T., Bailey F. Zhang Z. G., and Chopp M. 1993. Nitric oxide measured by a porphyrinic microsensor in rat brain after middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 13:355–358.

    Google Scholar 

  67. Tominaga T., Sato S., Ohmishi T., and Ohmishi S. T. 1994. Electron paramagnetic resonance (EPR) detection of nitric oxide produced during forebrain ischemia in the rat. J. Cereb. Blood Flow Metab. 14:715–722.

    Google Scholar 

  68. Hooper D. C., Ohnishi, S. T., Kean R., Numagami Y., Dietzschold B., and Koprowski H. 1995. Local nitric oxide production in viral and autoimmune diseases of the central nervous system. Proc. Natl. Acad. Sci. 92:5312–5316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizzozero, O.A., Bixler, H., Parkhani, J. et al. Nitric Oxide Reduces the Palmitoylation of Rat Myelin Proteolipid Protein by an Indirect Mechanism. Neurochem Res 26, 1127–1137 (2001). https://doi.org/10.1023/A:1012370822754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012370822754

Navigation