Skip to main content
Log in

Activity, Selectivity, and Long-Term Stability of Different Metal Oxide Supported Gold Catalysts for the Preferential CO Oxidation in H2-Rich Gas

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A comparative study of the catalytic performance and long-term stability of various metal oxide supported gold catalysts during preferential CO oxidation at 80°C in a H2-containing atmosphere (PROX) reveals significant support effects. Compared to Au/γ-Al2O3, where the support is believed to behave neutrally in the reaction process, catalysts supported on reducible transition metal oxides, such as Fe2O3, CeO2, or TiO2, exhibit a CO oxidation activity of up to one magnitude higher at comparable gold particle sizes. The selectivity is also found to strongly depend on the employed metal oxide, amounting, e.g., up to 75% for Au/Co3O4 and down to 35% over Au/SnO2. The deactivation, which is observed for all samples with increasing time on stream, except for Au/γ-Al2O3, is related to the build-up of surface carbonate species. The long-term stability of the investigated catalysts in simulated methanol reformate depends crucially on the ability to form such by-products, with magnesia and Co3O4 supported catalysts being most negatively affected. Overall, Au/CeO2 and, in particular, Au/α-Fe2O3 represent the best compromise under the applied reaction conditions, especially due to the superior activity and the easily reversible deactivation of the latter catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.C. Bond and D. Thompson, Catal. Rev. Sci. Eng. 41 (1999) 319.

    Google Scholar 

  2. M. Haruta, Catal. Surv. Jpn. 1 (1997) 61.

    Google Scholar 

  3. R.M. Torres Sanchez, A. Ueda, K. Tanaka and M. Haruta, J. Catal. 168 (1997) 125.

    Google Scholar 

  4. M.J. Kahlich, H.A. Gasteiger and R.J. Behm, J. Catal. 182 (1999) 430.

    Google Scholar 

  5. M.M. Schubert, M.J. Kahlich, H.A. Gasteiger and R.J. Behm, J. Power Sources 84 (1999) 175.

    Google Scholar 

  6. S. Kawatsu, J. Power Sources 71 (1998) 150.

    Google Scholar 

  7. M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak and R.J. Behm, J. Catal. 197 (2001) 113.

    Google Scholar 

  8. M. Haruta, H. Kageyama, N. Kamijo, T. Kobayashi and F. Delannay, in: Successful Design of Catalysts, ed. T. Inui ( Elsevier, Amsterdam, 1988) p. 33.

    Google Scholar 

  9. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet and B. Delmon, J. Catal. 144 (1993) 175.

    Google Scholar 

  10. Y. Yuan, K. Asakura, H. Wan, K. Tsai and Y. Iwasawa, Chem. Lett. (1996) 755.

  11. U. Rodmerck, P. Ignaszewski, M. Lucas and P. Claus, Chem. Ing. Tech. 71 (1999) 873.

    Google Scholar 

  12. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal. 115 (1989) 301.

    Google Scholar 

  13. M.A.P. Dekkers, M.J. Lippits and B.E. Nieuwenhuys, Catal. Today 54 (1999) 381.

    Google Scholar 

  14. J.-D. Grunwaldt and A. Baiker, J. Phys. Chem. 103 (1999) 1002.

    Google Scholar 

  15. M.A. Bollinger and M.A. Vannice, Appl. Catal. B 8 (1996) 417.

    Google Scholar 

  16. J.-D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli and A. Baiker, J. Catal. 186 (1999) 458.

    Google Scholar 

  17. A.I. Kozlov, A.P. Kozlova, H. Liu and Y. Iwasawa, Appl. Catal. 182 (1999) 9.

    Google Scholar 

  18. A.M. Visco, A. Donato, C. Milone and S. Galvagno, React. Kinet. Catal. Lett. 61 (1997) 219.

    Google Scholar 

  19. D. Horvath, L. Toth and L. Guczi, Catal. Lett. 67 (2000) 117.

    Google Scholar 

  20. D.A.H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota and M. Haruta, J. Catal. 177 (1998) 1.

    Google Scholar 

  21. K. Grass and H.-G. Lintz, J. Catal. 172 (1997) 446.

    Google Scholar 

  22. C. Serre, F. Garin, G. Belot and G. Maire, J. Catal. 141 (1993) 9.

    Google Scholar 

  23. D. Andreeva, V. Idakiev, T. Tabakova, A. Andreev and R. Giovanoli, Appl. Catal. A 134 (1996) 275.

    Google Scholar 

  24. D. Andreeva, T. Tabakova, V. Idakiev, P. Christov and R. Giovanoli, Appl. Catal. A 169 (1998) 9.

    Google Scholar 

  25. F. Leroux, D. Guyomard and Y. Piffard, Solid State Ionics 80 (1995) 299.

    Google Scholar 

  26. M. Butel, L. Gautier and C. Delmas, Solid State Ionics 122 (1999) 271.

    Google Scholar 

  27. M.M. Schubert, Dissertation University of Ulm (2000).

  28. C. Hardacre, R.M. Ormerod and R.M. Lambert, J. Phys. Chem. 98 (1994) 10901.

    Google Scholar 

  29. M.M. Schubert, M.J. Kahlich, G. Feldmeyer, M. Hüttner, S. Hackenberg, H.A. Gasteiger and R.J. Behm, Phys. Chem. Chem. Phys. 3 (2001) 1123.

    Google Scholar 

  30. N.W. Cant and N.J. Ossipoff, Catal. Today 36 (1997) 125.

    Google Scholar 

  31. S.D. Lin, M.A. Bollinger and M.A. Vannice, Catal. Lett. 17 (1993) 245.

    Google Scholar 

  32. M. Mavrikakis, P. Stoltze and J.K. Nørskov, Catal. Lett. 64 (2000) 101.

    Google Scholar 

  33. S.M. Ward, J. Braslaw and R.L. Gealer, Thermochim. Acta 64 (1983) 107.

    Google Scholar 

  34. S. Hackenberg, University of Ulm, personal communication.

  35. M. Haruta, Catal. Today 36 (1997) 153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, M.M., Plzak, V., Garche, J. et al. Activity, Selectivity, and Long-Term Stability of Different Metal Oxide Supported Gold Catalysts for the Preferential CO Oxidation in H2-Rich Gas. Catalysis Letters 76, 143–150 (2001). https://doi.org/10.1023/A:1012365710979

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012365710979

Navigation