Skip to main content
Log in

Role of Glutathione in the Response of Escherichia coli to Osmotic Stress

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The growth of Escherichia coli mutants deficient in glutathione synthesis (gshA) and in glutathione reductase (gor) was suppressed in medium of elevated osmolarity. A mutant in γ-glutamyl transpeptidase (ggt) displayed better ability for osmoadaptation than the parental strain. The unfavorable effect of the gsh mutation on osmoadaptation of growing E. coli cells was more pronounced at low concentrations of K+ in the medium. An increase in osmolarity caused an increase in the intracellular content of glutathione. Changes in the extracellular glutathione level were biphasic: the glutathione level rapidly decreased during the first stage of the response and increased during the second stage. The changes in glutathione levels suggest that under hyperosmotic shock the glutathione transport from the medium into the cell can contribute to the intracellular glutathione accumulation. Changes in the level of intracellular K+ were similarly biphasic: a rapid increase in the K+ level during the first stage of the response to hyperosmotic shock changed to a gradual decrease during the second stage. In mutant gshA cells adapted to osmotic shock, the intracellular K+ level was markedly higher than in the parental strain cells. The possible role of glutathione in the response of E. coli to osmotic shock is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wood, J. M. (1999) Microbiol.Mol.Biol.Rev., 63, 230–262.

    PubMed  Google Scholar 

  2. Dinnbier, U., Limpinsel, E., Schmid, R., and Bakker, E. P. (1988) Arch.Microbiol., 150, 348–357.

    PubMed  Google Scholar 

  3. Larsen, P. I., Sydnes, L. K., Landfald, B., and Str∅m, A. R. (1987) Arch.Microbiol., 147, 1–7.

    PubMed  Google Scholar 

  4. Munro, G. F., Hercules, K., Morgan, J., and Sauerbier, W. (1972) J.Biol.Chem., 247, 1272–1280.

    PubMed  Google Scholar 

  5. McLaggan, D., Logan, T. M., Lynn, D. G., and Epstein, W. (1990) J.Bacteriol., 172, 3631–3636.

    PubMed  Google Scholar 

  6. Meury, J., and Kepes, A. (1982) EMBO J., 1, 339–343.

    PubMed  Google Scholar 

  7. Smirnova, G. V., Muzyka, N. G., and Oktyabrsky, O. N. (2000) FEMS Microbiol.Lett., 186, 209–213.

    PubMed  Google Scholar 

  8. Demple, B. (1991) Annu.Rev.Genet., 25, 315–337.

    PubMed  Google Scholar 

  9. Smirnova, G. V., Muzyka, N. G., Glukhovchenko, M. N., and Oktyabrsky, O. N. (2000) Free Rad.Biol.Med., 28, 1009–1016.

    PubMed  Google Scholar 

  10. Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor, N. Y.

    Google Scholar 

  11. Tietze, F. (1969) Analyt.Biochem., 27, 502–522.

    PubMed  Google Scholar 

  12. Alonso-Moraga, A., Bocanegra, A., Torres, J. M., López-Barea, J., and Pueyo, C. (1987) Mol.Cell.Biochem., 73, 61–68.

    PubMed  Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J.Biol.Chem., 193, 265–275.

    PubMed  Google Scholar 

  14. Becker-Hapak, M., and Eisenstark, A. (1995) FEMS Microbiol.Lett., 134, 39–44.

    PubMed  Google Scholar 

  15. Hashimoto, W., Suzuki, H., Yamamoto, K., and Kumagai, H. (1997) Biosci.Biotech.Biochem., 61, 34–39.

    Google Scholar 

  16. Owens, R. A., and Hartman, P. E. (1986) J.Bacteriol., 168, 109–114.

    PubMed  Google Scholar 

  17. Ohwada, T., and Sagisaka, S. (1988) Agric.Biol.Chem., 52, 313–319.

    Google Scholar 

  18. Oktyabrsky, O. N., and Smirnova, G. V. (1993) Biochem.Mol.Biol.Int., 30, 377–383.

    PubMed  Google Scholar 

  19. Epstein, W., and Schultz, S. G. (1965) J.Gen.Physiol., 49, 221–234.

    Google Scholar 

  20. Measures, J. C. (1975) Nature, 257, 398–400.

    PubMed  Google Scholar 

  21. Le Rudulier, D., Strøm, A. R., Dandekar, A. M., Smith, L. T., and Valentine, R. C. (1984) Science, 224, 1064–1068.

    Google Scholar 

  22. Tempest, D. W., Meers, J. L., and Brown, C. M. (1970) J.Gen.Microbiol., 64, 171–185.

    PubMed  Google Scholar 

  23. Castle, A. M., Macnab, R. M., and Shulman, R. G. (1986) J.Biol.Chem., 261, 7797–7806.

    PubMed  Google Scholar 

  24. Apontoweil, P., and Berends, W. (1975) Biochim.Biophys.Acta, 399, 1–9.

    PubMed  Google Scholar 

  25. Suzuki, H., Kumagai, H., and Tochikura, T. (1987) J.Bacteriol., 169, 3926–3931.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, G.V., Krasnykh, T.A. & Oktyabrsky, O.N. Role of Glutathione in the Response of Escherichia coli to Osmotic Stress. Biochemistry (Moscow) 66, 973–978 (2001). https://doi.org/10.1023/A:1012361323992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012361323992

Navigation