Skip to main content
Log in

Linear Orientational Magnetodynamics of a Ferrogel

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The dynamics of magnetization is theoretically studied for a system of ferromagnetic nanoparticles suspended in a gel (a ferrogel). The Brownian motion impedes orientation of the particles determined by the elastic matrix. Therefore, the main parameter of the medium determining the static magnetic susceptibility value is the ratio of the modulus of elasticity of matrix to the temperature. The dispersion factors of dynamic susceptibility components include combinations of the velocities of several processes: elastic restoration of the orientation of particles, their rotational Brownian diffusion, and viscous relaxation of the inertial motion. The absorption of the energy of the alternating field in a ferrogel is found to be lower than in an isotropic magnetic suspension. The effect of the interaction of elastic and Brownian forces on the effective times of ferrogel magnetization relaxation is monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Liebert, L. and Martinet, A., J. Phys. Lett. (France), 1979, vol. 40, no. 5, p. 363.

    Google Scholar 

  2. Fabre, P., Cassagrande, C., Veyssie, M., et al., Phys. Rev. Lett., 1990, vol. 64, no. 5, p. 539.

    Google Scholar 

  3. Berejnov, V., Bacri, J.-G., Cabuil, V., et al., Europhys. Lett., 1998, vol. 41, no. 5, p. 507.

    Google Scholar 

  4. Dumas, J. and Bacri, J.-C., J. Phys. Lett. (France), 1980, vol. 41, no. 12, p. 279.

    Google Scholar 

  5. Zrinyi, M., Barsi, L., and Buki, A.B., J. Chem. Phys., 1996, vol. 104, no. 21, p. 8750.

    Google Scholar 

  6. Raikher, Yu.L. and Rusakov, V.V., Zh. Eksp. Teor. Fiz., 1996, vol. 110, no. 5, p. 1797; Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1996, vol. 54, no. 4, p. 3846.

    Google Scholar 

  7. Volkov, V.S., Zh. Eksp. Teor. Fiz., 1990, vol. 98, no. 1, p. 168.

    Google Scholar 

  8. Dejardin, J.-L., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 58, no. 3, p. 2808.

    Google Scholar 

  9. Raikher, Yu.L. and Rusakov, V.V., Kolloidn. Zh., 1996, vol. 58, no. 4, p. 539.

    Google Scholar 

  10. Volkov, V.S. and Leonov, A.I., J. Chem. Phys., 1996, vol. 104, no. 15, p. 5922.

    Google Scholar 

  11. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuos Media), Moscow: Nauka, 1982.

    Google Scholar 

  12. Calderwood, J.H., Coffey, W.T., Morita, A., and Walker, S., Proc. R. Soc. London, Ser. A, 1976, vol. 352, p. 275.

    Google Scholar 

  13. Coffey, W.T., Evans, M.W., and Grigolini, P., Molecular Diffusion and Spectra, New York: Wiley-Interscience, 1984.l

    Google Scholar 

  14. Landau, L.D. and Lifshits, E.M., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1982.

    Google Scholar 

  15. de Gennes, P.G., Scaling Concepts in Polymer Physics, Ithaka: Cornell Univ. Press, 1979.

    Google Scholar 

  16. Raikher, Yu.L. and Shliomis, M.I., Adv. Chem. Phys., 1994, vol. 87, p. 595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raikher, Y.L., Rusakov, V.V. Linear Orientational Magnetodynamics of a Ferrogel. Colloid Journal 63, 607–614 (2001). https://doi.org/10.1023/A:1012355203924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012355203924

Keywords

Navigation