Skip to main content
Log in

Isolation, Crystallization, and Investigation of Ribosomal Protein S8 Complexed with Specific Fragments of rRNA of Bacterial or Archaeal Origin

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8–RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Held, W. A., Ballou, B., Mizushima, A., and Nomura, M. (1974) J.Biol.Chem., 249, 3103–3111.

    PubMed  Google Scholar 

  2. Nowtony, V., and Nierhaus, K. H. (1988) Biochemistry, 27, 7051–7055.

    PubMed  Google Scholar 

  3. Dean, D., Yetes, J. L., and Nomura, V. (1981) Nature, 289, 89–91.

    PubMed  Google Scholar 

  4. Ungewickell, E., Garret, R. A., Ehresmann, Ch., Stiegler, P., and Fellner, P. (1975) Eur.J.Biochem., 51, 165–180.

    PubMed  Google Scholar 

  5. Wower, I., and Brimacombe, R. (1983) Nucleic Acids Res., 11, 1419–1437.

    PubMed  Google Scholar 

  6. Mougel, M., Allmang, C., Eyermann, F., Cachia, C., Ehresmann, B., and Ehresmann, C. (1993) Eur.J.Biochem., 215, 787–792.

    PubMed  Google Scholar 

  7. Monie, H., Cachia, C., Westhof, E., Ehresmann, B., and Ehresmann, C. (1997) RNA, 3, 255–268.

    PubMed  Google Scholar 

  8. Kalurachchi, K., Uma, K., Zimmermann, R. A., and Nikonowicz, E. P. (1997) Proc.Natl.Acad.Sci.USA, 94, 2139–2144.

    PubMed  Google Scholar 

  9. Kalurachchi, K., and Nikonowicz, E. P. (1998) J.Mol.Biol., 280, 639–654.

    PubMed  Google Scholar 

  10. Lancaster, L., Culver, G. M., Yusupova, G. Zh., Cate, J. H., Yusupov, M. M., and Noller, H. F. (2000) RNA, 6, 717–729.

    PubMed  Google Scholar 

  11. Vysotskaya, V., Tishchenko, S., Garber, M., Kern, D., Mougel, M., Ehresmann, C., and Ehresmann, B. (1994) Eur.J.Biochem., 223, 437–445.

    PubMed  Google Scholar 

  12. Gregory, R. J., Cahill, P. B. F., Thurlow, D. L., and Zimmermann, R. A. (1988) J.Mol.Biol., 204, 295–307.

    PubMed  Google Scholar 

  13. Ceretti, D. P., Mattheakis, L. C., Kearney, K. R., Vu, L., and Nomura, M. (1988) J.Mol.Biol., 204, 309–329.

    PubMed  Google Scholar 

  14. Davis, C., Ramakrishnan, V., and White, S. W. (1996) Structure, 4, 1093–1104.

    PubMed  Google Scholar 

  15. Nevskaya, N., Tishchenko, S., Nikulin, A., Al-Karadaghi, S., Liljas, A., Ehresmann, B., Ehresmann, C., Garber, M., and Nikonov, S. (1998) J.Mol.Biol., 279, 233–244.

    PubMed  Google Scholar 

  16. Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000) Nature, 407, 327–339.

    Google Scholar 

  17. Viera, J., and Messing, J. (1987) Meth.Enzymol., 153, 3–11.

    PubMed  Google Scholar 

  18. Milligan, J. F., and Unlenbeck, O. C. (1989) Meth.Enzymol., 180, 51–62.

    PubMed  Google Scholar 

  19. Wyatt, J. R., Chastain, M., and Puglishi, J. D. (1991) BioTechniques, 11, 764–769.

    PubMed  Google Scholar 

  20. Calderone, T. L., Stevens, R. D., and Oas, T. G. (1996) J.Mol.Biol., 262, 407–412.

    PubMed  Google Scholar 

  21. Brinkmann, U., Mattes, R. E., and Buckel, P. (1989) Gene, 85, 109–114.

    PubMed  Google Scholar 

  22. Leahy, D. S., Hendrickson, W. A., Aukhil, I., and Erickson, H. P. (1992) Science, 258, 987–991.

    PubMed  Google Scholar 

  23. Doublie, S. (1997) Meth.Enzymol., 267, 523–529.

    Google Scholar 

  24. Gourse, R., Thurlow, D., Gerbi, S., and Zimmermann, R. (1981) Proc.Natl.Acad.Sci.USA, 78, 2722–2726.

    PubMed  Google Scholar 

  25. Zimmermann, R., Thurlow, D., Finn, R., Marsh, T., and Ferrett, L. (1980) in RNA Polymerase, tRNA and Ribosomes: Their Genetics and Evolution(Osawa, S., Ozeki, H., Uchida, H., and Yura, T., eds.) University of Tokyo Press, Tokyo, pp. 569–584.

    Google Scholar 

  26. Ramirez, C., Koepke, A. K. E., Yang, D.-C., Boeckh, T., and Matheson, A. T. (1993) in The Biochemistry of Archaea (Archaebacteria)(Kates, M., Kushner, D., and Higgins, S. J., eds.) Elsevier, Amsterdam, pp. 439–466.

    Google Scholar 

  27. Mougel, M., Eyermann, F., Westhof, E., Romby, P., Expert-Bezancon, A., Ebel, J.-P., Ehresmann, B., and Ehresmann, C. (1987) J.Mol.Biol., 198, 91–107.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tishchenko, S.V., Vassilieva, J.M., Platonova, O.B. et al. Isolation, Crystallization, and Investigation of Ribosomal Protein S8 Complexed with Specific Fragments of rRNA of Bacterial or Archaeal Origin. Biochemistry (Moscow) 66, 948–953 (2001). https://doi.org/10.1023/A:1012353122174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012353122174

Navigation