Skip to main content
Log in

CH Acidity of Di- and Trisubstituted Methanes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

It is shown that the CH acidity of di- and trisubstituted methanes can be studied using the ap- proaches consisting in singling out the contributions of physically significant factors from the overall acidification mechanisms in the gas phase and in solution. This procedure implies formal decomposition of the calculated gas-phase deprotonation energy ΔEdeprot into the following terms: electrostatic energy of proton detachment from the “acid” CH bond, with the state of the remainder of the molecule absolutely unperturbed (ΔE 1); electronic relaxation energy of the resulting molecular residue and formation of a “virtual” carbanion therefrom (ΔE 2); the ΔEdeprot component due to displacement of the atomic nuclei on changing from the “virtual” to real carbanion ΔE 3. Relationships between the energy components ΔE 1, ΔE 2, ΔE 3, and the commonly used characteristics of the molecular structure were investigated. The parameter ΔE 1 is selectively sensitive to the inductive effect of the substituent. Imperfect correlation between ΔE 1 and the sum of the σI constants can be due to the fact that the contributions to the σI constants from the effective charge on the hydrogen atom of the CH bond being deprotonated and from the polarizabilities of the substituents are not taken into account. In contrast to monosubstituted methanes, in di- and trisubstituted methanes there is no correlation between the ΔE 2 component and the 1 J(13CH) constants. The linear dependence linking the sums of the components ΔE 1 + ΔE 2 and the pyramidal angle in the carbanions is responsible for the relaxation nature of the effects associated with the ΔE 2 + ΔE 3 sum. Comparison of the data obtained with the calculated patterns of redistribution of the effective charges on atoms accompanying conversion of CH acids to carbanions enabled elucidation of the relative contribution of each of the components, ΔE 2 and ΔE 3, to the deprotonation energy of selected groups of substituted methanes. The previously developed technique of separating the energy of protolytic equilibrium in the gas from that of solvation processes in solution enabled assessment of the contributions from electrostatic solvation to pK a in DMSO. The same technique of singling out the solvation component due to intermolecular hydrogen bonds from pK a(H2O) was used in studying the acid-base equilibria for substituted methanes in aqueous solution. It was shown that the solvation effects manifested in the liquid-phase CH acidity can be modeled by the effects revealed for analogous hydrogen bonds of ion-molecule complexes in the gas phase. The relationships between the strength of hydrogen bonds and the CH-acidic properties of compounds in the gas phase and liquid water are similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tupitsyn, I.F., Popov, A.S, and Zatsepina, N.N., Zh. Obshch. Khim., 1998, vol. 68, no. 8, pp. 1376-1382.

    Google Scholar 

  2. Tupitsyn, I.F., Zatsepina, N.N., and Kaufman, V.Z., Zh. Obshch. Khim., 1995, vol. 65, no. 9, pp. 1500-1516.

    Google Scholar 

  3. Tupitsyn, I.F., Popov, A.S., and Zatsepina, N.N., Zh. Obshch. Khim., 1998, vol. 68, no. 3, pp. 449-460.

    Google Scholar 

  4. Tupitsyn, I.F., Popov, A.S., and Zatsepina, N.N., Zh. Obshch. Khim., 1996, vol. 66, no. 8, pp. 1308-1320.

    Google Scholar 

  5. Koppel, J.A., Taft, R.W., Anvia, F., DesMarter, D.D., Yagupolskii, L.M., Ignatev, N.V., Vlasov, V.M., and Notario, R., J. Am. Chem. Soc., 1994, vol. 116, no. 7, pp. 3047-3057.

    Google Scholar 

  6. Castejon, H.J. and Wiberg, K.B., J. Org. Chem., 1998, vol. 63, no. 12, pp. 3937-3742.

    Google Scholar 

  7. Ionin, B.I. and Ershov, B.A., YaMR spektroskopiya v organicheskoi khimii (NMR Spectroscopy in Organic Chemistry), Leningrad: Khimiya, 1967.

    Google Scholar 

  8. Maciel, G.E., McIver, I.W., Ostlund, N.S., and Pople, I., J. Am. Chem. Soc., 1970, vol. 92, no. 1, pp. 1-11.

    Google Scholar 

  9. Juan, C. and Gutowsky, R., J. Chem. Phys., 1962, vol. 37, no. 10, pp. 219-228.

    Google Scholar 

  10. Hirshfeld, F.J., Theor. Chim. Acta, 1977, vol. 44, no. 2, pp. 122-138.

    Google Scholar 

  11. Taft, R.W., Abboud, I.T., and Anvia, F., J. Am. Chem. Soc., 1988, vol. 110, no. 6, pp. 1797-1800.

    Google Scholar 

  12. Afonin, A.V., Viznani, S., Ruie de Azua, M., and Kontreras, R.H., Izv. Ross. Akad. Nauk, Ser. Khim., 1996, no. 6, pp. 1362-1365.

  13. Bent, H., Chem. Rev., 1961, vol. 61, no. 3, pp. 275-311.

    Google Scholar 

  14. Reutov, O.A., Beletskaya, I.P., and Butin, K.P., CH-Kisloty (CH Acids), Moscow: Nauka, 1980, p. 63.

    Google Scholar 

  15. Kitchie, C., Solute-Solvent Interactions, Goetze, M., Ritchie, C.D., and Decker, A., Eds., New York: Pergamon, 1976, p. 219.

    Google Scholar 

  16. Kolthoff, J.M., Anal. Chem., 1974, vol. 46, no. 8, pp. 1992-1996.

    Google Scholar 

  17. Aue, D.H., Webb, H.M., and Bowers, M.T., J. Am. Chem. Soc., 1976, vol. 98, no. 2, pp. 318-329.

    Google Scholar 

  18. Tupitsyn, I.F., Popov, A.S., and Shibaev, A.Yu., Zh. Obshch. Khim., 1992, vol. 62, no. 9, pp. 2100-2111.

    Google Scholar 

  19. Tupitsyn, I.F., Popov, A.S., Zatsepina, N.N., and Kaufman, V.Z., Zh. Obshch. Khim., 1998, vol. 68, no. 7, pp. 1128-1137.

    Google Scholar 

  20. Tupitsyn, I.F. and Popov, A.S., Zh. Obshch. Khim., 1995, vol. 65, no. 3, pp. 446-457.

    Google Scholar 

  21. Tupitsyn, I.F. and Popov, A.S., Zh. Obschch. Khim., 1994, vol. 64, no. 5, pp. 783-795.

    Google Scholar 

  22. Bordwell, F.G., Acc. Chem. Res., 1988, vol. 21, no. 12, pp. 456-463.

    Google Scholar 

  23. Streitwieser, A.I., Jurasti, E., and Nebezahl, L.L., Comprehensive Carbanion Chemistry, New York: Elsevier, 1980, pp. 334-384.

    Google Scholar 

  24. Wiberg, K.B., Castejon, H., and Keith, T.A., J. Comput. Chem., 1996, vol. 17, no. 2, pp. 185-190.

    Google Scholar 

  25. Symons, E.A. and Clermont, M.I., J. Am. Chem. Soc., 1981, vol. 103, no. 11, pp. 3127-3130.

    Google Scholar 

  26. Ivanov, A.I., Slovetskii, V.I., Shevelev, S.A., Fainzil'berg, A.A., and Novikov, S.S., Zh. Fiz. Khim., 1966, vol. 40, no. 9, pp. 2298-2301.

    Google Scholar 

  27. Koppel, J.A., Melder, U.H., and Palm, V.A., Reakts. Sposobn. Org. Soedin., 1985, vol. 22, no. 1, pp. 43-47.

    Google Scholar 

  28. Belikov, V.M. and Belokon', Yu.N., Izv. Akad. Nauk SSSR, Ser. Khim., 1971, no. 2, pp. 335-342.

  29. Speers, P., Laidig, K.E., and Streitwieser, A.J., J. Am. Chem. Soc., 1994, vol. 116, no. 20, pp. 9257-9261.

    Google Scholar 

  30. Wiberg, K.B. and Castejon, H., J. Org. Chem., 1995, vol. 60, no. 20, pp. 6327-6334.

    Google Scholar 

  31. Guthrie, I.P., Chem. Biol., 1996, vol. 3, no. 2, pp. 163-170.

    Google Scholar 

  32. Gerit, I.A., Kreevoy, M.M., and Cleland, W.W., Chem. Biol., 1997, vol. 4, no. 4, pp. 259-267.

    Google Scholar 

  33. Abbato, A., Breadmante, S., and Pagani, A., J. Org. Chem., 1993, vol. 50, no. 2, pp. 449-455.

    Google Scholar 

  34. Meot-Ner, M., J. Am. Chem. Soc., 1984, vol. 106, no. 17, pp. 1257-1265.

    Google Scholar 

  35. Meot-Ner, M., J. Am. Chem. Soc., 1988, vol. 110, no. 12, pp. 3858-3862.

    Google Scholar 

  36. Gatev, G.G., Zhong, M., and Brauman, J.I., J. Am. Chem. Soc., 1998, vol. 120, no. 42, pp. 10863-10870.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tupitsyn, I.F., Popov, A.S. CH Acidity of Di- and Trisubstituted Methanes. Russian Journal of General Chemistry 71, 89–101 (2001). https://doi.org/10.1023/A:1012341708989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012341708989

Keywords

Navigation