Bergmann's Principle and Deep-Water Gigantism in Marine Crustaceans

  • S. F. Timofeev


We present a review of the Bergmann's principle and deep-water gigantism in marine crustaceans. An increase in the geographic latitude and depth of crustaceans habitat (correlating mainly with lower temperatures) leads to an increased cell size, life span of the animal, and, as a result, an increase in the body size. Since Bergmann's principle and deep-water gigantism appear to be based on the same biological mechanisms, we propose a unified principle, according to which the size of the crustacean's body increases along the temperature gradient.


Body Size Temperature Gradient Cell Size Life Span Biological Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belyaev, G.M., Glubokovodnye okeanicheskie zheloba i ikh fauna (Abyssal Oceanic Troughs and Their Fauna), Moscow: Nauka, 1989.Google Scholar
  2. Bergmann, C., Uber die Verhaltnisse der Warmeokonomie der Tiere zu ihrer Grosse, Gottingen Studien 1847, Gottingen, 1848, p. 595.Google Scholar
  3. Birshtein, Ya.A., Glubokovodnye ravnonogie rakoobraznye severo-zapadnoi chasti Tikhogo Okeana (Abyssal Isopod Crustaceans of the North-Western Pacific Ocean), Moscow: Akad. Nauk SSSR, 1963.Google Scholar
  4. Birshtein, Ya.A. and Chindonova, Yu.G., Abyssal Mysids of the North-Western Pacific Ocean, Trudy Inst. Okeanologii, Akad. Nauk SSSR, 1958, vol. 27, p. 258.Google Scholar
  5. Bogorov, V.G., Plankton mirovogo okeana (Plankton of the World Ocean), Moscow: Nauka, 1974.Google Scholar
  6. Brinton, E., A New Abyssal Euphausiid, Thysanopoda minyops, with Comparisons of Eye Size, Photophores, and Associated Structures among Deep-Living Species, J. Crustac. Biol., 1987, vol. 7, p. 636.Google Scholar
  7. Brodskii, K.A., Vyshkvartseva, N.V., Kos, M.S., and Markhaseva, E.L., Veslonogie rakoobraznye (Copepoda, Calanoida) morei SSSR i sopredel'nykh vod (Copepods Copepoda and Calanoida of USSR Seas and Adjacent Water Bodies), Leningrad: Nauka, 1983.Google Scholar
  8. Broyer, De C., Analysis of the Gigantism and Dwarfness of Antarctic and Subantarctic Gammaridean Amphipoda, Adaptations within Antarctic Ecosystems, Washington: Smith. Inst., 1977.Google Scholar
  9. Burukovskii, R.N., Shrimps of Underwater Hills Sala-i-Gomes and Naska, Plankton and Benthos of Underwater Hills Naska and Sala-i-Gomes, Moscow: Nauka, 1990, p. 187.Google Scholar
  10. Casanova, J.-P., Nouvelles formulations des regles ecologiques connues sous le nom de regle de Bergmann et loi de Jordan, J. Plankton Res., 1981, vol. 3, p. 509.Google Scholar
  11. Chernov, Yu.I., Zhizn’ tundry (Life of the Tundra), Moscow: Mysl', 1980.Google Scholar
  12. Hassler, R.R. and Wilson, J.D., Origin and Biogeography of Abyssal Higher Crustaceans, Biosfera: evolyutsiya, prostranstvo, vremya. Biogeograficheskie ocherki (Biosphere: Evolution, Space, Time. Biogeographical Essays), Moscow: Progress, 1988, p. 197.Google Scholar
  13. Ivleva, I.V., Temperatura sredy i skorost' energeticheskogo obmena u vodnykh zhivotnykh (Environmental Temperature and the Rate of Energy Metabolism in Aquatic Animals), Kiev: Nauk. Dumka, 1981.Google Scholar
  14. Khanin, M.A. and Dorfman, N.L., Mathematical Modelling of Energy Metabolism of Homoiothermal Animals and Their Structural-Functional Parameters Established by Natural Selection, Mathematical Biology and Medicine, Moscow: VINITI, 1978, vol. 1, p. 58.Google Scholar
  15. King, M.G., Distribution and Ecology of Deep-Water Caridean Shrimps (Crustacea: Natantia) Near Tropical Pacific Islands, Bull. Mar. Biol., 1987, vol. 41, p. 192.Google Scholar
  16. King, M.G. and Butler, A.J., Relationship of Life-History to Depth in Deep-Water Caridean Shrimps (Crustacea: Natantia), Mar. Biol., 1985, vol. 86, p. 129.Google Scholar
  17. Koszteyn, J., Timofeev, S., Weslawski, J.M., and Malinga, B., Size Structure of Themisto abyssorum Boeck and Themisto libellula (Mandt) Populations in European Arctic Seas, Polar Biol., 1995, vol. 15, p. 85.Google Scholar
  18. Kuznetsov, A.P., The Effect of Hydrostatic Pressure on Marine Organisms, Oceanology. Biology of the Ocean. Biological Structure of the Ocean, Moscow: Nauka, 1977, vol. 1, p. 35.Google Scholar
  19. Kuznetsov, A.P., Deep-Water Fauna: Bases of Adaptation to Deep-Water Mode of Life. A History of Formation, in Adaptatsiya organizmov k glubokovodnomu obrazu zhizni (Adaptation of Organisms to Deep-Water Mode of Life), Moscow: Nauka, 1989, p. 7.Google Scholar
  20. La Barbera, M., The Evolution and Ecology of Body Size, Patterns and Processes in the History of Life, Berlin: Springer, 1986, p. 69.Google Scholar
  21. Lukin, E.I., Darvinizm i geograficheskie zakonomernosti v izmenenii organizmov (Darwinism and Geographic Trends in Variation of Organisms), Moscow: Akad. Nauk SSSR, 1940.Google Scholar
  22. Mauchline, J., The Biology of Mysids and Euphausiids, Adv. Mar. Biol., 1980, vol. 18, p. 1.Google Scholar
  23. Mauchline, J., Growth and Production of Euphausiacea (Crustacea) in the Rockall Trough, Mar. Biol., 1985, vol. 90, p. 19.Google Scholar
  24. Mauchline, J., Growth and Breeding of Meso-and Bathypelagic Organisms of the Rockall Trough, Northeastern Atlantic Ocean and Evidence of Seasonality, Mar. Biol., 1988, vol. 98, p. 387.Google Scholar
  25. McLaren, I.A. and Marcogliese, D.J., Similar Nucleus Numbers among Copepods, Can. J. Zool., 1983, vol. 61, p. 721.Google Scholar
  26. McLaren, I.A., Sevigny, J.-M., and Corkett, C.J., Body Size, Development Rates and Genome Size among Calanus Species, Hydrobiologia, 1988, vol. 167-168, p. 275.Google Scholar
  27. Menshutkina, T.V., Shrimps (Macrura) of the Laptev Sea, Novosibirsk Shoal and Adjacent Water Bodies, Ekosistemy Novosibirskogo melkovod'ya i fauna morya Laptevykh i sopredel'nykh vod (Ecosystems of the Novosibirsk Shoal and Fauna of the Laptev Sea and Adjacent Water Bodies), Leningrad: Nauka, 1990, p. 344.Google Scholar
  28. Mina, M.V. and Klevezal', G.A., Rost zhivotnykh. Analiz na urovne organizma (Growth of Animals. Analysis at the Level of Organism), Moscow: Nauka, 1976.Google Scholar
  29. Nemoto, T., Net Sampling and Abundance Assessment of Euphausiids, Biol. Oceanogr., 1983, vol. 2, p. 211.Google Scholar
  30. Pavshtiks, E.A., Biological Seasons and Duration of Life Span of Calanus hyperboreus Kroyer in Central Arctic, Priroda i khozyaistvo Severa (Nature and Economy of the North), Murmansk: Kn. Izd., 1976, no. 4, p. 121.Google Scholar
  31. Petryashev, V.V., Mysid Fauna (Crustacea: Mysidacea) of the Laptev Sea and Novosibirsk Shoal, Ekosistemy Novosibirskogo melkovod'ya i fauna morya Laptevykh i sopredel'nykh vod (Ecosystems of Novosibirsk Shoal and Fauna of the Laptev Sea and Adjacent Waters), Leningrad: Nauka, 1990, p. 187.Google Scholar
  32. Rass, T.S., The Size of Eggs in Poikilotherm Animals at Different Latitudes, Morfologicheskie issledovaniya zhivotnykh ( Morphological Studies of Animals), Moscow: Nauka, 1985, p. 165.Google Scholar
  33. Rass, T.S., Biogeographical Rule of Reciprocal Relationship between Egg Size of Poikilotherm Animals and Environmental Temperature, Trudy Inst. Okeanol. Akad. Nauk SSSR, 1986, vol. 116, p. 152.Google Scholar
  34. Reaka, M.L., Biogeographic Patterns of Body Size in Stomatopod Crustacea: Ecological and Evolutionary Consequences, Crustaceana Issues, 1986, vol. 4, p. 209.Google Scholar
  35. Slagstad, D. and Tande, K.S., Growth and Production Dynamics of Calanus glacialis in an Arctic Pelagic Food Web, Mar. Ecol. Progr. Ser., 1990, vol. 63, p. 189.Google Scholar
  36. Slonim, A.D., Morphological Adaptations to Heat and Cold, in Rukovodstvo po fiziologii. Ekologicheskaya fiziologiya zhivotnykh. Ch. 3. Fiziologiya zhivotnykh v razlichnykh fizikogeograficheskikh zonakh ( Handbook on Physiology. Ecological Physiology of Animals, Part 3: Physiology of Animals in Different Physical-Geographic Zones), Leningrad: Nauka, 1982, p. 9.Google Scholar
  37. Sokolova, M.N., About Size Structure of Echiurs and Isopods at Different Forms of Relief Beyond the Continental Shelf, Sostav i raspredelenie donnykh bespozvonochnykh v moryakh Rossii i prilegayushchikh akvatoriyakh (Composition and Distribution of Benthic Invertebrates in the Seas of Russia and Adjacent Aquatoria), Moscow: Inst. Okeanol. Ross. Akad. Nauk, 1997, p. 19.Google Scholar
  38. Spaargaren, D.H., Shape and Hydrodynamic Properties in Relation to Size in Marine Macro-Crustacea, Crustaceana, 1999, vol. 72, p. 203.Google Scholar
  39. Sushchenya, L.M., Intensivnost’ dykhaniya rakoobraznykh (Intensity of Respiration of Crustaceans), Kiev: Nauk. Dumka, 1972.Google Scholar
  40. Timofeev, S.F., Concerning the Fauna of Mysids of the Kara Sea, Zool. Zh., 1985, vol. 64, no. 11, p. 1739.Google Scholar
  41. Timofeev, S.F., Makroplankton verkhnego 50-metrovogo sloya Norvezhskogo morya v marte-aprele 1989 goda (Macroplankton of the Upper 50-m Layer of the Norwegian Sea in March-April), Available from VINITI, 1990, no. 5272-B90.Google Scholar
  42. Timofeev, S.F., Phylogenetic Changes of Body Length in Euphausiacea (Crustacea, Malacostraca, Eucarida), Zool. Zh., 1992, vol. 71, no. 12, p. 25.Google Scholar
  43. Tseitlin, V.B., About the Relationships between Vertical Distribution and Size of Pelagic Planktophages, Okeanologiya, 1976, vol. 16, no. 1, p. 139.Google Scholar
  44. Tseitlin, V.B., About Factors Responsible for Changes of Size of Pelagic Zooplanktophages as a Function of Depth, Okeanologiya, 1977, vol. 17, no. 1, p. 132.Google Scholar
  45. Tseitlin, V.B., Energetika glubokovodnykh soobshchestv (Energetics of Deep-Water Communities), Moscow: Nauka, 1986.Google Scholar
  46. Van Voorhies, W.A., Bergmann Size Clines: A Simple Explanation for Their Occurrence in Ectotherms, Evolution, 1996, vol. 50, p. 1259.Google Scholar
  47. Vinogradov, G.M., Probable Pathways of Populating of Marine Pelagia by Amphipods-Hammarids: Analysis of Life Forms, Zh. Obshch. Biol., 1992, vol. 53, no. 3, p. 328.Google Scholar
  48. Vinogradov, M.E., Vertikal'noe raspredelenie okeanicheskogo zooplanktona (Vertical Distribution of Oceanic Zooplankton), Moscow: Nauka, 1968.Google Scholar
  49. Vinogradov, M.E., Volkov, A.F., and Semenova, T.N., Amphipoda, Hyperiiea mirovogo okeana (Amphipods-Hyperiids (Amphipoda, Hyperiidea) of the World Ocean), Leningrad: Nauka, 1982.Google Scholar
  50. Vinogradov, M.E., Mileikovskii, S.A., Rass, T.S., et al., L.A. Zenkevich and V.G. Bogorov-Authors of the Concept about the Biological Structure of the Ocean, Okeanologiya, 1973, vol. 13, no. 1, p. 5.Google Scholar
  51. Wolff, T., The Systematics and Biology of Bathyal and Abyssal Isopoda Asellota, Galathea Rep., 1962, vol. 6, p. 1.Google Scholar
  52. Zharkova, I.S., Changes in the Size and Number of Cells As a Function of Increased Body Size in Abyssal Animals by the Example of Isopods, Zh. Obshch. Biol., 1968, vol. 29, no. 2, p. 168.Google Scholar
  53. Zenkevich, L.A., Biological Structure of the Ocean, Zool. Zh., 1948, vol. 27, no. 2, p. 113.Google Scholar
  54. Zenkevich, L.A. and Bogorov, V.G., Biological Structure of the Ocean, Ekologiya vodnykh organizmov (Ecology of Aquatic Organisms), Moscow: Nauka, 1966, p. 3 Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • S. F. Timofeev
    • 1
  1. 1.Murmansk Marine Biological Institute, Kola Science CenterRussian Academy of SciencesMurmanskRussia

Personalised recommendations